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ABSTRACT
Conventional genome‐wide association studies (GWAS) are designed to assess the effect of a genetic locus on phenotypic mean

by genotype. Such loci explain a proportion of phenotypic variance known as narrow‐sense heritability. In contrast, variance

quantitative trait loci (vQTL) are associated with the phenotypic variance by genotype. These loci explain an additional

proportion of phenotypic variance and contribute to broad‐sense heritability but not to narrow‐sense heritability. Here, a

genome‐wide vQTL analysis in 22,805 African Americans yielded eight loci for body mass index (BMI). Of these loci, three were

replicated in 6002 sub‐Saharan Africans. No locus reached genome‐wide significance using the standard additive model.

Furthermore, no locus showed evidence for natural selection, haplotype effects, or gene × sex or gene × study interactions. Two

loci showed evidence for an effect of locus‐specific ancestry resulting from admixture and for a gene × gene interaction. One

locus showed evidence for interaction with diastolic blood pressure, consistent with this vQTL capturing an unmodeled

gene × covariate interaction. These analyses demonstrate that relevant BMI loci can be detected by evaluating vQTL and that

these loci contribute to the underexplored broad‐sense heritability for this trait.

1 | Introduction

Narrow‐sense heritability is defined as the ratio of additive genetic
variance to total phenotypic variance and is interrogated by con-
ventional genome‐wide association studies assuming the standard
additive genetic model. In contrast, broad‐sense heritability is
defined as the ratio of total genetic variance to total phenotypic
variance, capturing the contribution of non‐additive genetics to
total phenotypic variance. One way to examine non‐additive
genetics is to assess phenotypic variance by genotype by searching
for variance quantitative trait loci (vQTL) (Paré et al. 2010;
Rönnegård and Valdar 2011, 2012). There are several possible
explanations for phenotypic variance differing by genotype,
including unmodeled gene × gene and gene × covariate interac-
tions (Cao et al. 2014; Ek et al. 2018). Testing for the presence of
vQTL requires genotype data but does not require knowledge of,
or data for, potential interactors (Struchalin et al. 2010).

Body mass index (BMI) is a complex quantitative trait. Com-
parison of estimates of narrow‐sense heritability to broad‐sense
heritability suggests substantial contributions of non‐additive
genetics to adult BMI (Robinson et al. 2017; Yang et al. 2011).
Previous studies of BMI have reported gene × covariate inter-
actions between genetic variants such as those in FTO and
covariates such as alcohol intake, diet, and physical activity
(Marderstein et al. 2021; Wang et al. 2019; Young et al. 2018).
These studies were limited to British individuals with European
ancestry.

African Americans are both genetically and environmentally
diverse compared to British individuals of European ancestry,
such that vQTL might not transfer across groups. Here, we
extend the search for vQTL for BMI to African Americans.
Whereas African Americans have approximately 80% sub‐
Saharan African ancestry (Shriner et al. 2009), we attempt
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replication in an independent study of sub‐Saharan Africans.
We describe evidence for three vQTL not previously reported in
individuals of European ancestry, with all three loci mapping to
regulatory variants. In contrast to previous findings in in-
dividuals of European ancestry, we find no evidence that FTO is
a vQTL in individuals of African ancestry. Also, we investigate
several possible explanations for the presence of the three
vQTL. We detect varying contributions of admixture, gene ×
gene interactions, and gene × covariate interactions to the
presence of the three vQTL.

2 | Materials and Methods

2.1 | Discovery Studies

The discovery studies comprised eight data sets of African
Americans. The Atherosclerosis Risk in Communities (ARIC)
Study is a prospective longitudinal study of cardiovascular dis-
ease in adults (The ARIC Investigators 1989). The Cleveland
Family Study (CFS) is a prospective longitudinal study of sleep
apnea in families (Redline et al. 1995). The Genetic Epide-
miology Network of Arteriopathy (GENOA) is a prospective
longitudinal study of hypertension in sibships (Daniels
et al. 2004). The Howard University Family Study (HUFS) is a
cross‐sectional study in families (Adeyemo et al. 2009). The
Jackson Heart Study (JHS) is a prospective longitudinal study of
cardiovascular disease in one community (Taylor et al. 2005).
The Multi‐Ethnic Study of Atherosclerosis (MESA) is a pro-
spective longitudinal study of cardiovascular disease in adults
(Bild 2002). The Sea Islands Genetic Network (SIGNET) is a
case‐control study of type 2 diabetes in one community (Garvey
et al. 2003). The Women's Health Initiative (WHI) is a pro-
spective longitudinal study of women's health in post-
menopausal women (Assaf and Carleton 1994). Each study
performed genotyping using the Affymetrix Genome‐Wide
Human SNP Array 6.0. Using PLINK (version 1.90b2k), qual-
ity control was performed separately by study, filtering for
individual call rate ≥ 90%, marker call rate ≥ 95%, and
Hardy−Weinberg equilibrium p≥ 1 × 10−10. Monomorphic and
strand‐ambiguous markers were removed. The bcftools (version
1.9) plugin fixref was used to fix reference allele mismatches
with the human reference sequence (human_g1k_v37.fasta).
The Python script checkVCF.py (version 1.4) was used to check
input vcf files before imputation. Imputation was performed
through the TOPMed Imputation Server using the r2 panel,
filtering for rsq ≥ 0.3 and minor allele frequency ≥ 0.5%. The
eight imputed data sets were then merged using bcftools.

2.2 | Discovery Analysis

Phenotypic variables included BMI (kg/m2), age (years), and sex.
Using GCTA (version 1.93.2beta), we estimated the genetic
relatedness matrix and extracted the first principal component.
Using the R package GMMAT (version 1.3.1), we obtained the
residuals from the generalized linear mixed model regressing
BMI on age, sex, study, and the first principal component as fixed
effects and the genetic relatedness matrix as a random effect,
using the identity link function. Using the R package stats, we
performed the rank‐based Fligner−Killeen test of homogeneity of

variance (Fligner and Killeen 1976) using the residuals and the
most probable genotypes. The R implementation of the test uses
median centering. The Fligner−Killeen test is robust to hetero-
geneity of phenotypic means by genotype under additive, domi-
nant, or recessive models but is sensitive to the combined effects
of skewness and excess kurtosis in the phenotypic distribution
(Conover et al. 1981). To further investigate the validity and
power of the Fligner−Killeen test, we simulated two groups of
size 100,000 from different distributions (Supporting Information
S1: Table S1). For each comparison, we generated 10,000 inde-
pendent data sets and set the significance level to 0.05.

2.3 | Replication Study

Replication data were drawn from the Africa America Diabetes
Mellitus (AADM) study, comprised of participants from Ghana
and Nigeria (West Africa) and Kenya (East Africa) (Adeyemo
et al. 2019). To account for the fact that this study used several
genotyping arrays, quality control and imputation were per-
formed separately for each array as described under Discovery
Studies. The five imputed data sets were merged using bcftools.

2.4 | Replication Analysis

Phenotypic variables included BMI, age, sex, and genotyping
array. Using GCTA, we estimated the genetic relatedness matrix
and extracted the top two principal components. Using
GMMAT, we obtained the residuals from the generalized linear
mixed model regressing BMI on age, sex, genotyping array, and
the top two principal components as fixed effects and the
genetic relatedness matrix as a random effect, using the identity
link function. Using R, we performed the rank‐based
Fligner−Killeen test of homogeneity of variance using the re-
siduals and the most probable genotypes.

2.5 | Phenotypic Variance Explained

P values from the Fligner−Killeen test were converted into t‐
statistics which were used to obtain unbiased estimates of the
correlation coefficient r based on the formula r =

t

t n+ − 22
,

given a sample size n. An unbiased estimate of the proportion of
phenotypic variance explained radj

2 was then obtained from the

formula r r= −adj
r

n
2 2 1−

− 2

2

.

2.6 | Annotation

Loci were manually annotated using Ensembl release 104
(Howe et al. 2021), HaploReg version 4.1 (Ward and
Kellis 2016), and GTEx release 8.

2.7 | Gene ×Gene and Gene × Covariate
Interactions

Gene × gene interactions were tested by regressing the residual
BMI outcome on the most probable genotype at the first
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marker, the most probable genotype at the second marker, and
their product. Gene × covariate interactions were tested by re-
gressing the residual BMI outcome on the most probable
genotype at a marker, the covariate, and their product. Current
smoking and current drinking were analyzed as binary vari-
ables. Blood pressure was reported as the average of the second
and third readings if three readings were taken, as the second
reading if two readings were taken, or the first reading if one
reading was taken.

2.8 | Locus‐Specific Ancestry Inference

We used RFMix version 1.5.4 (Maples et al. 2013) to perform
locus‐specific ancestry inference for the African Americans as
previously described (Shriner et al. 2023). We inferred locus‐
specific ancestry for each of the eight discovery studies sepa-
rately and then merged the locus‐specific ancestry calls across
the intersection of 527,318 markers that were genotyped in all
eight studies.

3 | Results

We performed quality control and imputation separately for
eight studies of African Americans (Supporting Information S1:
Table S2). We merged the studies after imputation, yielding a
discovery data set including 23,643 individuals and 16,503,295
markers. Similarly, we performed quality control and imputa-
tion for sub‐Saharan Africans from one study separately by
genotyping array (Supporting Information S1: Table S3). We
merged the data after imputation, yielding a replication data set
including 6,051 individuals and 15,795,649 markers. BMI was
regressed on age, sex, study (for African Americans),

genotyping array (for sub‐Saharan Africans), and top principal
components (one for African Americans and two for sub‐
Saharan Africans, Supporting Information S2: Figure S1 and
Figure S2, respectively) as fixed effects and the genetic relat-
edness matrix as a random effect (to account for both known
and cryptic relatedness) using a generalized linear mixed
model. Residuals were tested against genotype using the rank‐
based Fligner−Killeen test of homogeneity of variances. Ac-
counting for missing phenotype and covariate data, the dis-
covery analysis comprised 22,805 African American individuals
and the replication analysis comprised 6,002 African in-
dividuals. Of 15 markers in eight loci that reached genome‐wide
significance in the discovery analysis (Figure 1), six markers in
three loci replicated (Table 1). All six markers were either
genotyped or had high imputation quality (Supporting Infor-
mation S1: Table S4). Phenotypic variance explained by each
vQTL ranged from 0.13% to 0.19% in the discovery data set and
from 0.06% to 0.08% in the replication data set (Table 1).

At the chromosome 2 locus, variance decreased as the number
of minor alleles increased at each of the four markers (Figure 2).
Three of four markers are intronic in COBLL and the fourth
marker is intergenic. The four markers are in strong pairwise
linkage disequilibrium (all pairwise r2≥ 0.982) in the discovery
data. At the chromosome 6 locus, variance increased as
the number of minor alleles increased (Figure 2). The minor
allele frequency at the SNP rs147864906 was 1.2%, and the
genotype with two minor alleles at rs147864906 had a count of
four. Due to this sparsity, we repeated the test in individuals
with zero or one minor alleles and the significance was
reduced from 3.95 × 10−11 to 2.24 × 10−3. Even though the
Fligner−Killeen test is robust to differences in group means,
the variance among minor allele homozygotes was poorly esti-
mated with such a small sample size. Therefore, we advise

FIGURE 1 | Manhattan plot from discovery analysis of vQTL for body mass index in African Americans.
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caution in interpreting results at this marker. At the chromo-
some 7 locus, variance was largest for heterozygotes (Figure 2).

A vQTL can be a locus under natural selection. For example, if
extreme phenotypic values are associated with reduced fitness,
then the underlying genotype distribution might not be in
Hardy‐Weinberg equilibrium. All six markers showed
Hardy−Weinberg equilibrium (minimum p= 0.4935 in the
discovery data and 0.3604 in the replication data), providing
evidence against this scenario (Table 1).

At the vQTL on chromosome 2, the haplotype containing the
major (and ancestral) allele at each marker had a frequency of
68.1% in the discovery data. Similarly, the haplotype containing
the minor (and derived) allele at each marker had a frequency
of 31.5%. Nine haplotypes collectively accounted for the
remaining 0.4%. The test of homogeneity of variances based on
the two most frequent haplotypes was genome‐wide significant
(p= 1.61 × 10−8), comparable to the genotype‐based results for
rs36105243 (p= 1.73 × 10−8) and rs7592412 (p= 1.49 × 10−8). A
difference test of all haplotypes versus the two most frequent
haplotypes was not significant (p= 0.465), indicating that the
cumulative effect of the nine rare haplotypes was negligible
(Supporting Information S1: Table S5). These results provide
evidence against the explanation that the presence of a vQTL at
this locus reflected multiple causal haplotypes.

A vQTL can indicate the presence of population stratification.
Given a discovery data set of admixed African Americans, we
tested the residual BMI outcome against locus‐specific ancestry.
We observed significant effects of locus‐specific ancestry at the
loci on chromosomes 2 and 7 (p= 1.30 × 10−4 and 0.0449,
respectively), but not at the locus on chromosome 6 (p= 0.744).
At the loci on chromosomes 2 and 7, variance decreased as the

amount of African ancestry decreased (Figure 3). Additionally,
at chromosome 2, all four minor alleles had a frequency of
22.5% in the African background but were the major alleles in
the European background, with frequencies ranging from 58.5%
to 59.6% (FST = 0.237−0.248). At chromosome 7, the minor
allele varied from 31.3% in the African background to 16.1% in
the European background (FST = 0.061). To remove locus‐
specific ancestry effects induced by admixture, we tested gen-
otypes within the stratum of locus‐specific ancestry defined by
homozygous African ancestry (Figure 4). At the chromosome 2
locus, all four markers still yielded evidence for the presence of
a vQTL (p from 1.27 × 10−3 to 1.83 × 10−3). The phenotypic
variance explained was approximately 0.06%, indistinguishable
from the amount explained in the African replication data set.
Based on these results, we estimated that admixture explained
approximately 53% of the signal at the chromosome 2 locus.

To eliminate confounding due to variation in parental ancestry
when the confounding locus acts in an additive manner, it is
sufficient to control for genome‐wide ancestry (Redden
et al. 2006). To eliminate confounding due to variation in
parental ancestry when the confounding locus acts in a non‐
additive manner, it is sufficient to control for the proportion of
the genome that is homozygous for African ancestry, in addi-
tion to controlling for genome‐wide ancestry (Redden
et al. 2006). Inclusion in the null model of the first principal
component in the African American data controls for genome‐
wide ancestry, and therefore for confounding when the con-
founding locus acts in an additive manner. To test for the
presence of confounding by variation in parental ancestry when
the confounding locus acts in a non‐additive manner, we
compared the residual BMI outcome and the proportion of the
genome homozygous for African ancestry. After inverse‐normal
transforming both variables, we observed no evidence that the
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TABLE 1 | Discovery and replication results from genome‐wide vQTL analysis of body mass index.

Discovery

Chr SNP RefSeq ID Position (bp)a
Minor
allele

Major
allele p value r2adj MAFb

HWE.
pvalue Additive. pvalue

2 chr2:164648055:G:T rs12692735 164,648,055 G T 3.68E−08 1.28E−03 0.314 0.9634 3.52E−06

2 chr2:164655284:C:G rs10179126 164,655,284 C G 2.56E−08 1.32E−03 0.3133 1 7.54E−06

2 chr2:164668241:C:G rs36105243 164,668,241 C G 1.73E−08 1.35E−03 0.3162 0.9513 3.83E−06

2 chr2:164669828:T:C rs7592412 164,669,828 T C 1.49E−08 1.36E−03 0.3158 0.9878 3.48E−06

2 chr2:164687940:G:A rs6738627 164,687,940 G A 1.26E−08 1.38E−03 0.317 0.7033 8.99E−06

2 chr2:164688863:C:CAA 164,688,863 C CAA 3.77E−08 1.28E−03 0.2705 0.3246 4.82E−05

3 chr3:78354830:C:T rs1901

21444

78,354,830 T C 1.65E−08 1.35E−03 0.00897 0.6999 0.8461

6 chr6:85227974:C:T rs147864906 85,227,974 T C 3.95E−11 1.87E−03 0.01174 0.5488 0.05679

7 chr7:76211003:A:G rs7798565 76,211,003 G A 2.46E−08 1.32E−03 0.2733 0.4935 0.008402

10 chr10:99498312:C:G rs56866375 99,498,312 G C 3.40E−08 1.29E−03 0.02648 0.3596 0.3969

12 chr12:64004860:C:T rs115517761 64,004,860 T C 1.22E−08 1.38E−03 0.02398 0.2467 0.01904

13 chr13:19105986:G:A rs534466881 19,105,986 A G 9.88E−09 1.40E−03 0.01284 0.793 0.2327

13 chr13:105972955:T:G rs114804599 105,972,955 G T 4.93E−08 1.26E−03 0.00954 1 0.9352

13 chr13:105973696:A:C rs116107204 105,973,696 C A 4.82E−08 1.26E−03 0.00967 1 0.9863

13 chr13:105973780:A:AT 105,973,780 AT A 4.98E−08 1.26E−03 0.00956 1 0.9003

aBased on GRCh38.



residual BMI outcome was associated with variation in parental
ancestry (Wilcoxon signed‐rank test, p= 0.697). This result
indicates that the detection of vQTL is not a false positive result
due to confounding from population stratification in the form of
variation in parental ancestry.

Another possible explanation for a vQTL is a locus with an
unmodeled gene × gene interaction. To test this explanation, we
note that if one interacting locus is a vQTL, then the other
interacting locus should also be a vQTL. Therefore, we per-
formed pairwise comparisons for the six replicated markers. For
all 15 pairwise comparisons, we observed point‐wise signifi-
cance for the interaction term only for the chromosome
6 × chromosome 7 test (Supporting Information S1: Table S6),
with the interaction effect explaining 9% of the signal at the
chromosome 6 vQTL and 13% of the signal at the chromosome 7
vQTL. Similarly, a vQTL can be a locus with unmodeled
gene × sex or gene × study interactions. However, none of the
six markers showed evidence for these types of interactions
(all p> 0.05).

A vQTL can also be a locus with an unmodeled gene × covariate
(or environment) interaction. To test this explanation, we tested
current smoking and current alcohol drinking (beer, wine, or
liquor) as potential interacting variables with available ques-
tionnaire data. Although both variables had significant main
effects (p= 1.46 × 10−41 and 2.07 × 10−13, respectively), we
observed no significant interactions with any of the six repli-
cated markers (Supporting Information S1: Table S7 and
Table S8). Additionally, we investigated both systolic blood
pressure (SBP) and diastolic blood pressure (DBP) (Julius
et al. 2000). Both SBP and DBP had strong associations with the
residual BMI outcome (p= 2.08 × 10−85 and 1.82 × 10−71,
respectively). None of the six markers had significant

interaction effects with SBP (Supporting Information S1:
Table S9). The marker at the chromosome 7 locus, rs7798565,
had a point‐wise significant interaction effect with DBP
(Supporting Information S1: Table S10), consistent with an
unmodeled gene ×DBP interaction explaining 20% of the signal
at this vQTL.

4 | Discussion

We have identified three novel associations between genetic loci
and BMI based on heterogeneity in variance by genotype. Pre-
vious analysis of BMI in the subsample of British individuals
with European ancestry in the UK Biobank yielded evidence for
gene × covariate interactions between genetic variants in FTO
and covariates such as alcohol intake and physical activity
(Marderstein et al. 2021; Wang et al. 2019; Young et al. 2018). In
contrast, no marker at FTO reached genome‐wide significance
as a vQTL in African Americans. Collectively, these findings
indicate key differences in genotype−phenotype relationships
and possibly the genetic architecture of BMI between these two
ancestrally diverse groups.

The locus on chromosome 2 is a splicing QTL for COBLL in
visceral adipose tissue (p = 1.10 × 10−14) and an expression
QTL (eQTL) for SLC38A11 in multiple tissues including naïve
adipose (p = 1.77 × 10−8). COBLL1 possesses an actin‐binding
domain and is involved in cell morphology, cell growth, and
migration (Takayama et al. 2018). SLC38A11 is a putative
sodium‐coupled neutral amino acid transporter. Of the four
markers at this locus, rs10179126 maps to a predicted TFCP2
binding site with differential binding by allele, and
rs36105243 maps to predicted E2A, TBX5, and ZEB1 binding
sites with differential binding by allele. Additionally,

Replication

Regulatory feature Consequence Gene p value r2adj MAF2 HWE. pvalue Additive. pvalue

Intergenic 0.03410188 5.82E−04 0.2422 0.4193 0.4086

ENSR00001040126 Regulatory region variant COBLL1 0.02385151 6.84E−04 0.2416 0.3604 0.3811

Intronic COBLL1 0.01431195 8.33E−04 0.2415 0.3791 0.3381

Intronic COBLL1 0.01687543 7.85E−04 0.2413 0.3981 0.3623

Intronic COBLL1 0.0650255 4.01E−04 0.2465 0.2521 0.4588

Intronic COBLL1 0.2937594 1.71E−05 0.1994 0.03569 0.5618

Intergenic 0.3790635 −3.87E−05 0.00798 0.312 0.5819

Intergenic 0.0311676 6.07E−04 0.01206 0.5854 0.6366

Intronic SRRM3 0.02781348 6.40E−04 0.2925 0.8762 0.6564

Intergenic 0.6434473 −1.31E−04 0.03743 0.5892 0.6563

ENSR00001191801 Regulatory region variant SRGAP1 0.8217791 −1.58E−04 0.03561 0.02263 0.3227

Intronic lncRNA 0.833989 −1.59E−04 0.0133 0.6285 0.5737

ENSR00000489922 Regulatory region variant lncRNA 0.3690827 −3.22E−05 0.01322 1 0.76

Intronic lncRNA 0.3679336 −3.15E−05 0.0133 1 0.735

0.3618914 −2.81E−05 0.01322 1 0.776

bMinor allele frequency.
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FIGURE 2 | Boxplots of outcome versus genotype at the replicated loci. The plots show the distribution of the residual body mass index outcome

as a function of the number of copies of the minor allele. The central value is the median, the box shows the first and third quartiles, and the whiskers

represent ±1.58 times the interquartile range divided by sqrt(n), which is approximately the 95% confidence interval.

FIGURE 3 | Boxplots of outcome versus locus‐specific ancestry at the replicated loci. The plots show the distribution of the residual body mass

index outcome as a function of the number of chromosomes from the European ancestral background. The central value is the median, the box

shows the first and third quartiles, and the whiskers represent ±1.58 times the interquartile range divided by sqrt(n).
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rs36105243 maps to an enhancer in blood, and rs7592412
maps to an enhancer in fat, skin, and mesenchymal stem
cells. At the locus on chromosome 6, rs147864906 is inter-
genic and maps to a predicted CEBPB binding site with dif-
ferential binding by allele located 222 kb upstream of NT5E
(also known as CD73). At the locus on chromosome 7,
rs7798565 is intronic in SRRM3 and maps to a predicted
ZBTB33 binding site with differential binding by allele. The
locus is an eQTL for STYXL1 in multiple tissues, including
subcutaneous adipose tissue (p = 9.59 × 10−32).

The chromosome 2 locus has been previously associated with
type 2 diabetes (Morris et al. 2012), triglycerides (Willer
et al. 2013), waist‐hip ratio (Shungin et al. 2015), and circulating
leptin (Kilpeläinen et al. 2016). No associations have been re-
ported for the markers at the other two loci. In our discovery data
set, no marker had genome‐wide significant association with
BMI under the standard additive genetic model, although five of
the six markers in the three vQTL yielded point‐wise significance
and the sixth was just above that threshold (p= 0.06).

There are some notable strengths of vQTL analysis. One major
advantage of vQTL analysis over modeling of gene × covariate
interactions arises from the wide variety of potential environ-
mental interactors, including those that are not captured or
captured well by questionnaires or other standard measure-
ments. Two, vQTL analysis can detect loci that contribute non‐
additive genetics to phenotypic variance and thus help to ex-
plain broad‐sense heritability. In turn, the utility of polygenic
risk scores could be improved by the incorporation of additional
loci that explain a component of phenotypic variance in addi-
tion to the component attributed to additive genetics.

Our study has some notable limitations. One, the discovery
analysis in African Americans yielded eight associations, of
which three replicated in sub‐Saharan Africans. Given the
admixed nature of African Americans, it is possible that one or
more of the five associations that did not replicate in sub‐
Saharan Africans might replicate in Europeans. However, evi-
dence from vQTL studies from the UK Biobank (Marderstein
et al. 2021; Wang et al. 2019; Young et al. 2018) do not support

FIGURE 4 | Boxplots of outcome versus genotype conditional on locus‐specific ancestry at the replicated loci. The plots show the distribution of

the residual body mass index outcome as a function of the number of copies of the minor allele conditional on two chromosomes from the African

ancestral background. The central value is the median, the box shows the first and third quartiles, and the whiskers represent ±1.58 times the

interquartile range divided by sqrt(n).
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this possibility. Two, the environmental factors we tested were
by no means an attempt to be exhaustive, so it is possible that
other gene × covariate interactions could explain more of the
vQTL signals.

In summary, we detected three vQTL for BMI in African
Americans and sub‐Saharan Africans. One vQTL on chromo-
some 2 mapped to four tightly linked variants including two
regulatory variants with potentially pleiotropic effects on two
genes in multiple tissues. Two vQTL on chromosomes 6 and 7
both mapped to single regulatory variants. Compared to find-
ings from European populations, these small numbers of var-
iants per locus reflect more precise delineation of risk loci
resulting from weak linkage disequilibrium in populations of
African ancestry. We found that natural selection, haplotype
effects, gene × sex interactions, and gene × study interactions
are all unlikely to explain heterogeneity in variance by genotype
at any of the three vQTL. In contrast, we found that locus‐
specific ancestry effects resulting from admixture, gene × gene
interactions, and gene × covariate interactions partially ex-
plained heterogeneous variance by genotype. In the context of
gene × covariate interactions, differences in environmental ex-
posures, especially when samples reflect diverse lifestyles, cul-
tures, and geography, should be considered.
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