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Abstract

Background: Artificial intelligence (AI) has potential in promoting and supporting self-management in patients with chronic
conditions. However, the development and application of current AI technologies to meet patients’ needs and improve their
performance in chronic condition self-management tasks remain poorly understood. It is crucial to gather comprehensive information
to guide the development and selection of effective AI solutions tailored for self-management in patients with chronic conditions.

Objective: This scoping review aimed to provide a comprehensive overview of AI applications for chronic condition
self-management based on 3 essential self-management tasks, medical, behavioral, and emotional self-management, and to identify
the current developmental stages and knowledge gaps of AI applications for chronic condition self-management.

Methods: A literature review was conducted for studies published in English between January 2011 and October 2024. In total,
4 databases, including PubMed, Web of Science, CINAHL, and PsycINFO, were searched using combined terms related to
self-management and AI. The inclusion criteria included studies focused on the adult population with any type of chronic condition
and AI technologies supporting self-management. This review was conducted following the PRISMA-ScR (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines.

Results: Of the 1873 articles retrieved from the search, 66 (3.5%) were eligible and included in this review. The most studied
chronic condition was diabetes (20/66, 30%). Regarding self-management tasks, most studies aimed to support medical (45/66,
68%) or behavioral self-management (27/66, 41%), and fewer studies focused on emotional self-management (14/66, 21%).
Conversational AI (21/66, 32%) and multiple machine learning algorithms (16/66, 24%) were the most used AI technologies.
However, most AI technologies remained in the algorithm development (25/66, 38%) or early feasibility testing stages (25/66,
38%).

Conclusions: A variety of AI technologies have been developed and applied in chronic condition self-management, primarily
for medication, symptoms, and lifestyle self-management. Fewer AI technologies were developed for emotional self-management
tasks, and most AIs remained in the early developmental stages. More research is needed to generate evidence for integrating AI
into chronic condition self-management to obtain optimal health outcomes.

(J Med Internet Res 2025;27:e59632) doi: 10.2196/59632
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Introduction

Background
Chronic conditions, such as cardiovascular disease, diabetes,
cancer, and chronic respiratory disease, are leading causes of
death and disabilities [1]. With an aging population worldwide
and increased comorbidities and complexity of care, the global
burden of chronic condition management is rapidly growing
[2,3]. In the United States alone, chronic conditions affected
over 50% of adults in 2016, accounting for 86% of health care
spending and at least 7 of the 10 leading causes of death [4].
Chronic conditions are often long term and uncertain, and
patients need to take extensive responsibility for better managing
their conditions [5]. It is widely accepted that self-management
is essential to improve health outcomes for individuals with
chronic conditions [6]. For policy makers and health care
providers, self-management initiatives are increasingly
recognized as an effective way to enhance health and well-being
while simultaneously reducing the burdens on health care
resources [7].

Patients living with chronic conditions commonly alternate
exacerbations and remissions, and medical, behavioral, and
emotional management are essential tasks integrated into disease
self-management [8]. Medical self-management refers to
adhering to prescribed medications and taking appropriate
actions to manage symptoms, whereas behavioral management
can involve modifying lifestyle behaviors (eg, healthy diets and
physical activity). Emotional management is to cope with
emotions and feelings regarding long-term chronic conditions
[8]. Successful self-management, including those tasks, requires
sufficient knowledge and necessary skills to manage the diseases
and relevant consequences, which can be particularly
challenging for most individuals [9,10].

Artificial intelligence (AI) and machine learning (ML)
techniques hold the potential to overcome self-management
challenges for individuals with chronic conditions. AI is defined
as the technology with the ability of machines to understand,
think, learn, infer, and make decisions in a similar way to human
beings. ML is a subfield of AI focusing on developing
algorithms and models capable of learning from data [11-13].
AI is helpful in improving the quality and access to care,
reducing cost, and optimizing daily self-management when
integrating with clinical information systems and patient-facing
technologies [2]. AI technologies have also been reported to
support chronic condition management by enabling early disease
detection, improving diagnostic accuracy, and providing
patient-centered care [14,15]. Multiple studies have assessed
the efficacy of AI in contributing to positive health outcomes,
including weight loss, controlling blood glucose, pain
management, psychosocial well-being, and the quality of life
by enhancing self-management of chronic conditions [16-19].

However, while AI technologies are progressing toward tailoring
support for specific types of chronic conditions [20], there is a
lack of understanding of the current levels of AI applications

to support chronic condition self-management systematically
and how AI is integrated into self-management processes and
specific tasks, such as medical, behavioral, and emotional
self-management. Existing literature reviews focused on
developing a specific type of AI technology for certain chronic
condition management outcomes (eg, glucose level prediction
for managing diabetes, improving diagnostic tools for liver
diseases, or severity classification of respiratory disease)
[20-23]. One recent study reviewed AI applications for chronic
disease management but did not focus on how AI can support
patients’ needs and performance in self-management [24].

Objectives
Thus, the objectives of this study were to provide a
comprehensive overview of AI applications for chronic
condition self-management, with self-management components
supported by AI technologies based on tasks of medical,
behavioral, and emotional self-management, and to identify the
current developmental stages and knowledge gaps of AI
applications for self-management of chronic conditions.

Methods

Study Design
This study is a scoping review of the literature conducted
following the PRISMA-ScR (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Extension for Scoping
Reviews) guidelines [25]. The completed PRISMA-ScR
checklist is described in Multimedia Appendix 1.

Search Strategy
In total, 4 databases, including PubMed, Web of Science,
CINAHL, and PsycINFO, were used to search articles published
between January 2011 and October 2024 to obtain a
comprehensive list of studies relevant to our research topic. The
search strategies were developed based on consultation with a
health sciences librarian. Two groups of search
terms—self-management and artificial intelligence were used
in combination with their Medical Subject Headings (MeSH)
terms, keywords, and synonyms. The details of the search
strategy are presented in Multimedia Appendix 2.

Eligibility Criteria
The eligibility criteria for this scoping review are described in
Textbox 1. In this review, chronic conditions are defined as
those lasting >1 year and requiring ongoing medical attention
or limiting activities of daily life, following the definition
provided by the Centers for Disease Control and Prevention
[26].

Research team members worked with a health sciences librarian
on the literature search and the initial title and abstract screening.
All authors (MH, YC, YZ, and YJ) evaluated the selected full
texts and determined the data extraction strategies. The desired
level of screening agreement among raters was set at 80% and
achieved 100% after group discussion.
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Textbox 1. Eligibility criteria for scoping review.

Inclusion criteria

• Articles that applied any type of artificial intelligence (AI) technologies in self-management for chronic conditions

• Articles that targeted adults aged ≥18 years

• Articles published in English

Exclusion criteria

• Articles that had no component of chronic condition self-management (eg, AI for daily activities, for only diagnosing or predicting the incidence
of diseases, or for specific physical outcomes)

• Articles that had no description of the component of AI

• Non–data-driven articles (eg, viewpoints, editorial comments, or review articles)

• Articles with no access to the full text

Data Extraction and Information Synthesis
Study characteristics and information regarding AI applications
in self-management were extracted from each reviewed article.
Basic study characteristics included authors, year of publication,
country, and target chronic condition. The types of AI
technologies and their applications to support patients’
self-management tasks were extracted and reported. The tasks
included 3 categories: medical, behavioral, and emotional
self-management [8]. In this review, AI for medical
self-management encompasses AI technology’s specific role in
predicting disease processes and providing personalized
suggestions or decision-making support tailored to specific
conditions. Behavioral self-management encompasses AI

technology’s role in monitoring and helping with lifestyle
modification or providing personalized self-management
suggestions. Finally, emotional self-management encompasses
AI technology’s role in providing emotional support or assisting
in motivation improvement. The outcomes of each AI
technology were reported to review their effectiveness and
impact on self-management.

In addition, we mapped included studies according to the 9
generic study types for technology evaluation as reported by
Friedman and Wyatt [27] to categorize the current
developmental stage of each study. Next, we applied the
evaluation framework provided by Yen and Bakken [28], which
is proposed based on the system developmental life cycle (Table
1) [29].

Table 1. Mapping artificial intelligence developmental stages with technology evaluation study types.

Fridman and Wyatt [27] study typesCriteria for study classificationDevelopmental stage

Needs assessmentsStage 1 • Needs assessment

Evaluation of system validityStage 2 • Design validation

• Structure validation

Evaluation of human-computer interactionStage 3 • Usability test
• Laboratory function study
• Laboratory user effect study

Field testing; experimental or quasi-experimental designs in one settingStage 4 • Field function study

• Field user effect study

Field testing; experimental or quasi-experimental designs in multiple sitesStage 5 • Problem impact study

Results

Study Selection
Of the 1873 articles retrieved in the initial search, 524 (27.9%)
duplicates were removed. After assessing the titles and abstract,
73.7% (995/1349) of articles were excluded, and a full-text
review was conducted on the remaining 26.2% (354/1349) of
articles. Subsequently, 81.3% (288/354) of articles were

excluded based on the inclusion and exclusion criteria. The
reasons for exclusion were that the reported articles were not
conducted for the adult population (n=17, 4.8%); did not include
self-management components (n=148, 41.8%); did not include
AI components (n=57, 16.1%); or were commentary, opinion,
review, or abstract (n=66, 18.6%). Consequently, 66 (18.6%)
articles or studies were included in the final analysis (Figure
1).
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Figure 1. PRISMA flow diagram regarding the study selection process. AI: artificial intelligence.

Study Characteristics

Types of Chronic Conditions
Table 2 classifies the general characteristics of each study.
About a third of the studies (20/66, 30%) were conducted among
patients with diabetes, including type 1, type 2, and gestational
diabetes; 14% (n=9) were conducted among patients with
respiratory diseases, such as chronic obstructive pulmonary
disease (COPD) and asthma; 12% (n=8) were conducted among

patients with cancer and chronic pain, respectively; 8% (n=5)
were conducted among patients with cardiovascular diseases,
including heart failure and hypertension; and 24% (n=16) were
conducted among patients with other conditions, such as stroke,
frozen shoulder, spinal cord injury, inflammatory bowel
diseases, irritable bowel syndrome, multiple chronic conditions,
ostomy, chronic kidney disease, chronic liver disease, or patients
taking medications without mentioning specified chronic
conditions.

J Med Internet Res 2025 | vol. 27 | e59632 | p. 4https://www.jmir.org/2025/1/e59632
(page number not for citation purposes)

Hwang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. The classification of study characteristics (N=66).

Included studiesStudies, n (%)Characteristics

Publication year

[30-57]28 (42)2011-2019

[17-19,58-92]38 (58)2020-2024

Continent

[19,30,31,39,42,43,48,51,54,57,64,69,70,72,73,76-78,81,82,84,86,88,91,92]25 (38)North America

[59,89]2 (3)South America

[18,32-38,44,46,49,50,52,53,55,56,58,60,62,63,65,67,68,75,85]25 (38)Europe

[17,41,83]3 (5)Australia

[40,45,47,61,66,71,74,79,80,87,90]11 (17)Asia

Type of chronic condition

[17,30,40,41,44,48-50,55,60,61,67,68,71,72,74,75,82,91,92]20 (30)Diabetes

[31-34,46,52,58,62,69]9 (14)Respiratory diseases

[18,35,59,76,77]5 (8)Cardiovascular diseases

[53,79,81,84-88]8 (12)Cancer

[19,36,43,47,63,65,73,78]8 (12)Chronic pain

[37-39,42,45,51,54,56,57,64,66,70,80,83,89,90]16 (24)Other conditionsa

Type of AIb technologies

[17,52-54,74-90]21 (32)Conversational AI (including NLPc)

[18,30-39,58-62]16 (24)MLd (multiple algorithms)

[45-51,68-73]13 (20)Neural Network

[40-42,63-66]7 (11)ML (single algorithm)

[19,43,44,67]4 (6)RLe (including deep RL)

[55-57,91,92]5 (8)Nonspecified

Technology developmental stagef

[30-35,37,39-41,44,46,48,50,57,58,60-62,67-69,72,75,80]25 (38)System validity testing (stage 2)

[45,52,54,56,76,79,81-83,87-89]12 (18)Usability testing (stage 3)

[36,38,42,43,49,53,59,64,66,70,74,78,91]13 (20)Laboratory study (stage 3)

Field testing (stages 4 and 5)

[17-19,51,63,65,71,77,84,85]10 (15)Randomized controlled trial

[47,55,73,86,90]5 (8)Quasi-experimental study

[92]1 (2)Observational study

aOther conditions include stroke, frozen shoulder, spinal cord injury, inflammatory bowel diseases, irritable bowel syndrome, multiple chronic conditions,
ostomy, chronic kidney disease, chronic liver disease, or patients taking medications without mentioning specified chronic conditions.
bAI: artificial intelligence.
cNLP: natural language processing.
dML: machine learning.
eRL: reinforcement learning.
fAccording to the criteria given in Table 1.

Types of AI Technologies
Most studies (40/66, 61%) have applied ML-based algorithms
to support self-management, including neural networks and
reinforcement learning (RL). It was common for the studies

(16/66, 24%) to compare the performances of multiple ML
algorithms, such as support vector machines (SVMs), random
forest (RF), naïve Bayesian, decision tree (DT), adaptive
boosting, and k-nearest neighbors, or combine ML and deep
learning (DL) algorithms for the application [18,30-39,58-62].

J Med Internet Res 2025 | vol. 27 | e59632 | p. 5https://www.jmir.org/2025/1/e59632
(page number not for citation purposes)

Hwang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Fewer studies (7/66, 11%) only used 1 type of ML algorithm,
such as SVM, logistic regression, DT, or case-based reasoning
[40-42,63-66]. RL and deep RL were used in 4 (66%) studies
[19,43,44,67]. Some (13/66, 20%) studies used neural network
models for prediction [45-51,68-73]. The application of
conversational AI, such as chatbots or virtual assistants, was
reported in 21 (32%) studies [17,52-54,74-90]. Natural language
processing (NLP), a key component of conversational AI, was
solely used in 4 (6%) other studies [54,80-82]. The type of AI
technologies in the other 5 (8%) studies was not specified
[55-57,91,92].

AI Technology Development Stage
More than one-third of studies (25/66, 38%) were in stage 2,
which involves system validity testing. Similarly, another third
(25/66, 38%) were included in stage 3, which includes either
usability testing (12/25, 48%) or laboratory function or user

effect testing (13/25, 52%). The remaining studies (16/66, 24%)
were categorized into stage 4 or stage 5, conducting field testing,
experimental study, or quasi-experimental study in the real
world. Specifically, 10 (15%) studies conducted randomized
controlled trials (RCTs) [17-19,51,63,65,71,77,84,85]. In total,
6 (9%) studies used quasi-RCTs [55], one-group pretest-posttest
designs [47,73,86,90], or an observational study [92].

Self-Management Tasks by AI Functions and
Developmental Stages

Overview
Table 3 describes self-management tasks (medical, behavioral,
and emotional self-management) by categorized functions of
AI technologies and the technology developmental stage of
each study. Table 4 provides a detailed summary of the studies
included.
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Table 3. Self-management tasks and developmental stage.

Developmental stageSelf-management tasks
and category of functions

Stages 4 and 5Stage 3Stage 2

Medical self-management (n=45)

Personalized recom-
mendation for medi-

• General treatment decisions for
patients with diabetes [55,92]

• Insulin dose [49]• Insulin dose [44,67]
• The next dosage of anticoagula-

tion [37]
• Crisis support during acute exacerba-

tions of COPDa [52]cation or treatment-
related decision-
making (n=13)

• Adjusting the modality of thera-
pist interaction to manage pain
[19]

• Referral advice to manage pain [36]
• Medication and nutrition-specific infor-

mation for chronic liver disease [83] • Peritoneal dialysis management
[90]• Clinical reminders for patients with

chronic kidney disease [66]
• Ostomy management [89]

Promoting medica-
tion adherence and
safety (n=8)

• Improving medication adherence
and safety [51]

• Monitoring medication adherence [42]• Monitoring medication adher-
ence [57,75] • Detecting insulin administration [68]

• Detecting inhaler administration
[46]

• Improving medication adherence and
safety [56,70]

Prediction of physio-
logical indicators or

• Predicting blood pressure [18]• Predicting blood glucose levels [49]• Predicting blood glucose levels
or hypoglycemia events • Predicting pain level [73]• Predicting risk of adverse events of

heart failure [76][30,40,48,50,60,61,72]clinical outcomes
(n=19) • Predicting risk of asthma or

COPD exacerbation
• Identifying heart arrhythmias [59]

[31-34,58,62]
• Predicting adverse events or

classification of the extent of
heart failure [35]

—bCancer management
(n=6)

• Cancer-related symptoms [84]• Cancer-related symptoms [79]
• •Postoperative management [87] Chemotherapy-related side ef-

fects [85]• Oral anticancer agents [53,88]

Behavioral self-management (n=27)

Provision of person-
alized recommenda-

• Diet, physical activity, and other
lifestyles for patients with dia-

• Diet, physical activity, and other
lifestyles for patients with diabetes

• Diet, physical activity, and other
lifestyles for patients with dia-
betes [41,75]tions and feedback betes [17,74,92][82,91]

on lifestyle and • Diet or physical activity for pa-
tients with heart failure [76]

•• Diet or physical activity for pa-
tients with cardiovascular dis-

Physical activity for patients with
chronic pain [43,47]healthy behavior

(n=21) eases [18,77]•• Diet for patients with chronic condi-
tions (multiple chronic conditions, IB-

Various health behaviors for pa-
tients with multiple chronic • Nutrition for patients with can-

cer [84,86]Dc or IBSd, or chronic kidney disease)conditions [80]
[54,64,90] • Various health behaviors for pa-

tients with chronic pain [63,65]• Various health behaviors for patients
with chronic kidney disease [66]

Predicting and moni-
toring health behav-
ior outcomes (n=8)

• Monitoring physical activity
[18,84]

• Monitoring rehabilitation [38,45]• Symptom self-management
ability [69]

• •Treatment adherence and adher-
ence risk [35]

Monitoring diet [71]

• Prediction of ambulation status
and independence [39]

Emotional self-management (n=14)
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Developmental stageSelf-management tasks
and category of functions

Stages 4 and 5Stage 3Stage 2

• Emotional support by recogniz-
ing feelings from physiological
data (voice, heart rate) [18]

• Enhancing psychological flexi-
bility [73,84]

• Emotional support during periods of
low moods [52]

• Responding to patients’ distress [78]
• Identifying psychosocial concerns and

providing recommendations [81]
• Building emotional attachments

[53,83]

• Encouraging expressing emo-
tions through facial and body
animations [75]

Providing personal-
ized emotional sup-
port (n=9)

• Motivating and reinforcing the
desired self-management activi-
ties [63,65]

• Motivating to support performing self-
management [52]

• Motivating to support perform-
ing self-management [17,74]

• Encouraging patients to perform
self-management [57]

Motivating to per-
form self-manage-
ment activities (n=6)

aCOPD: chronic obstructive pulmonary disease.
bNot available.
cIBD: inflammatory bowel disease.
dIBS: irritable bowel syndrome.
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Table 4. Summary of included studies (N=66).

Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

MLb (SVMc)System valid-
ity testing

DiabetesAustraliaHuang
et al
[41],
(2015)

• Overall accuracy of SVM classifi-
cation of fruits was 90%.

• The SVM classifier implemented in a
smartphone app was trained using a
fruit database consisting of 10 types
of fruits. Each fruit type included 60
images.

• The average error rate was 6.86%.

• SVM classifies food types and vol-
umes and calculates the amount of
carbohydrates to help patients control
their diet.

ML (linear re-
gression)

System valid-
ity testing

DiabetesChinaShi et
al
[40],
(2015)

• Prediction accuracy using gradient
descent and the normal equation
was 63% and 73%, respectively.

• The linear regression method was se-
lected to gain a prediction model, and
2 algorithms were tested: gradient de-
scent and normal equation.

• The key technique is that the system
uses ML to extract the prediction
model from the training sample based
on user input.

• ML algorithm predicts postprandial
glucose level by analyzing the diet of
patients.

ML (RFd,
SVM, k-near-

System valid-
ity testing

DiabetesUnited
States

Sud-
harsan
et al

• Prediction accuracy was over 90%
in models using RF or SVM.

• If a set of blood glucose values is
available for a given week, it can be
predicted whether the patient will have • RF and SVM models had a 91.7%

sensitivity and 69.5% specificity.
est neighbor,
and naïve
Bayes)

[30],
(2015)

a hypoglycemic episode in the follow-
ing week. • After incorporating medication

information, the sensitivity and• ML algorithms predict a hypoglycemia
event in the next 24 h using self-moni- specificity were over 90%.
tored blood glucose and medication
information.

DLe (recurrent
neural net-
works)

System valid-
ity testing

DiabetesUnited
States

Faruqui
et al
[48],
(2019)

• Prediction accuracy was within
10% of the actual values based on
the Clark Error Grid.

• The DL model predicts daily glucose
levels based on patient health data, in-
cluding glucose levels from the day
before, diet, physical activity, and
weight.

• Neural networks used multiple layers
of computational nodes to model how
mobile health data progressed from
one day to another from noisy data.

Conversation-
al AI

System valid-
ity testing

DiabetesPortugalBalsa
et al
[75],
(2020)

• Participants (n=20) reported 73.75
of the system usability score on
average, which is a borderline
rating of excellent.

• An intelligent virtual assistant–based
system (VASelfCare) supports medica-
tion adherence and lifestyle change,
including healthy diets and physical
activity.

• Patients interact with the virtual assis-
tant that can speak and express emo-
tions through facial and body anima-
tions.

Conversation-
al AI

Field testing
(2-group

RCTf)

DiabetesAustraliaGong
et al
[17],
(2020)

• Participants in the intervention
group (n=93) and control group
(n=94) reduced HbA1cg (interven-
tion: 0.33% and control: 0.20%)
compared to baseline.

• A conversation AI (My Diabetes
Coach) provides personalized support,
including blood glucose monitoring,
diet, physical activity, medication, and
foot care.

• Health-related quality of life utili-
ty score was improved in the inter-

• Algorithms were tailored according to
the clinical targets and recommenda-
tions provided by each participant’s vention group (P=.04).
health care providers.
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Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

• Participants reported reduced
HbA1c by 0.49% (n=102), fasting
blood glucose by 11 mg/dL
(n=51), postprandial blood glu-
cose by 21 mg/dL (n=51), BMI
by 0.47 kg/m2 (n=59), and weight
by 1.32 kg (n=59) after 4 mo.

• A conversational AI (chatbot) commu-
nicates with patients regarding diet,
physical activity, and blood glucose
and provides personalized feedback
based on previous data.

• Patients can receive motivational
messaging, reducing the difficulty in
performing specific tasks and provid-
ing triggers needed to act.

• AI-powered decision support system
(Wellthy CARE) enabled across the
platform.

Conversation-
al AI

Laboratory
function test-
ing

DiabetesIndiaKrish-
naku-
mar et
al
[74],
(2021)

• In the goal comprehension task,
participants accurately selected
between 2 nutrition labels 89% of
the time.

• When choosing between 2 meal
images, their accuracy was 49%.

• ML based on attributable components
analysis identifies patterns and relation-
ships between meals and changes in
blood glucose levels.

• The system (GlucoGoalie) translates
ML output into actionable support by
generating natural language recommen-
dations for personalized nutritional
support to improve blood glucose lev-
els.

OthershLaboratory
function test-
ing

DiabetesUnited
States

Mitchell
et al
[91],
(2021)

• The 3 models based on expert-en-
gineered features reported mean
accuracies of 78.6%, 78.2%, and
78.3%.

• The model based on learned fea-
tures reported a mean accuracy of
79.7%.

• The 2 models fusing expert-engi-
neered and learned features report-
ed mean accuracies of 79.7% and
79.8%.

• The DL model detects early adherence
to once-daily basal insulin based on
continuous glucose monitoring and
injection data.

• Six different detection models were
compared according to whether they
fused expert-dependent and automati-
cally learned features.

DL (convolu-
tional neural
networks)

System valid-
ity testing

DiabetesDenmarkThyde
et al
[68],
(2021)

• The overall engagement ratio with
personalization was an average of
0.31, while the engagement ratio
without personalization was 0.26.

• Patients can receive personalized rec-
ommendations reflecting their health-
related social needs for self-manage-
ment detected by NLP.

NLPiUsability
testing

DiabetesUnited
States

Sy et
al
[82],
(2022)

• Participants with baseline mean
glucose >180 mg/dL (18/52)
demonstrated significant improve-
ments in glycemic control after 3
mo.

• An AI-based mobile app (BlueStart)
provides personalized feedback and
coaching to help patients track their
medication, sleep, exercise, and other
health behaviors.

• Patients can view their glucose levels
and identify patterns through a contin-
uous glucose monitoring system
(Dexcom G6) that synchronizes with
the app.

OthersField testing
(single-arm,
retrospective
study)

DiabetesUnited
States

Kum-
bara et
al
[92],
(2023)

• The decreases in HbA1c from
baseline to 6-mo in intervention
group 1 (–0.32, SD 0.58%) and
intervention group 2 (–0.49, SD
0.57%) were significantly larger
than those in the control group
(–0.06, SD 0.61%)

• Intervention groups demonstrated
greater weight loss than the con-
trol group after 6 mo.

• An AI-based mobile dietary manage-
ment platform (Auto-Chek Care) col-
lects data from multiple devices linked
via Bluetooth and performs integrated
analysis.

• A DL-based food recognition system
(FoodLens) incorporates diet and nutri-
tional data from photographs taken by
patients into the platform.

DL (convolu-
tional neural
network)

Field testing
(open-label
multicenter
RCT)

DiabetesSouth Ko-
rea

Lee et
al
[71],
(2023)

Diabetes
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Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

Greece,
United
Kingdom

Alexi-
adis et
al
[60],
(2024)

• RF showed the best accuracy
(0.814) and F1-score (0.812) with
sensitivity (0.815) and specificity
(0.824).

• The accuracy of other models
ranges from 0.65 to 0.80.

• The algorithms are used to perform
next-day hypoglycemia prediction in
daily life based on the data input from
a mobile app (forDiabetes) and
portable devices.

DL (artificial
neural net-
work), ML
(RF, SVM,
and Ad-

aBoostj)

System valid-
ity testing

• The light gradient boosting ma-
chine model had the highest pre-
dictive performance: accuracy
(0.801), specificity (0.802), and
F1-score (0.255).

• ML algorithms predict nocturnal hypo-
glycemia based on continuous glucose
monitoring data.

ML (logistic
regression,
RF, and light
gradient
boosting ma-
chine)

System valid-
ity testing

DiabetesChinaGong
et al
[61],
(2024)

• Predictions are accurate and close
to target (root mean squared er-
ror=17.6 mg/dL).

• Jump neural network means a feed-
forward neural network whose inputs
are connected not only to the first hid-
den layer but also to the output layer.

• Neural network predicts continuous
blood glucose based on patients’ input
of the carbohydrate amount.

DL (jump neu-
ral network)

System valid-
ity testing

Type 1 di-
abetes

ItalyZecchin
et al
[50],
(2014)

• After perceiving the glucose pre-
diction, 20% of participants decid-
ed to revise their initial decision.

• Participants (n=12) reported posi-
tive opinions about usability (>7
on average out of 9) and described
using the DSS as a pleasant expe-
rience.

• The DSSk, named GlucoP, was de-
signed to help patients in real-time
while performing therapeutic correc-
tive actions, including administration
of insulin bolus to correct hyper-
glycemia or intake of carbohydrates in
case of hypoglycemia.

• The glucose predictor is based on an
artificial neural network trained with
continuous glucose monitoring pro-
files.

DL (artificial
neural net-
work)

Laboratory
function test-
ing

Type 1 di-
abetes

SpainPérez-
Gandía
et al
[49],
(2018)

• ABBA significantly decreased the
percentage of time in hypo-
glycemia and severe hypo-
glycemia ranges (P<.05), while
the percentages of hyperglycemia
were increased.

• The ML-based ABBAl allows daily
adjustment of the insulin infusion pro-
file to compensate for fluctuations in
the patient’s glucose level.

• ABBA provides personalized sugges-
tions for the daily basal rate and pran-
dial insulin doses based on the pa-
tients’ glucose level on the previous
day.

ML (reinforce-
ment learning)

System valid-
ity testing

Type 1 di-
abetes

Switzer-
land

Sun et
al
[44],
(2019)

• DRL insulin bolus adviser im-
proved percentage time in target
scope (70-180 mg/dL) from
74.1% to 80.9% (for adults) and
54.9%-61.6% (for adolescents)
while reducing hypoglycemia.

• The DRLm adviser can calculate the
gain of the meal insulin bolus to help
users control the insulin pump or pen.

• The DRL adviser provides a personal-
ized insulin bolus adviser to optimize
insulin at mealtime.

DL and ML
(reinforcement
learning)

System valid-
ity testing

Type 1 di-
abetes

United
Kingdom

Zhu et
al
[67],
(2020)

• An area under the receiver operat-
ing curve of the model ranged
from 0.71 to 0.80 to predict noc-
turnal hypoglycemic events.

• The DL algorithm predicts at bedtime
the probability and timing of nocturnal
hypoglycemia based on glucose met-
rics and physical activity patterns.

• Predictions are used to prescribe bed-
time carbohydrates in a timely manner.

DL (evidential
neural net-
work)

System valid-
ity testing

Type 1 di-
abetes

United
States

Mos-
quera-
Lopez
et al
[72],
(2023)

OthersField testing
(quasi RCT)

Gestation-
al dia-
betes

SpainRigla
et al
[55],
(2018)
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Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

• Participants (n=20) reported a
higher degree of compliance and
satisfaction.

• Systolic and diastolic blood pres-
sure were significantly lower in
the intervention group (P<.001),
compared to the historical cohort
group.

• MobiGuide is an AI-based mobile
system based on computer-inter-
pretable guidelines for providing per-
sonalized decision support to patients
having a DSS at the back end and a
body area network on the front end.

• AI using DSS enables personalized
decision support or feedback based on
patient-reported blood glucose, ke-
tonuria, diet, blood pressure, and
physical activity without medical su-
pervision.

• 3 models using naïve Bayesian,
adaptive Bayesian network, and
SVM predicted asthma exacerba-
tion occurring on day 8, with the
sensitivity of 0.80, 1.00, and 0.84;
specificity of 0.77, 1.00, and 0.80;
and accuracy of 0.77, 1.00, and
0.80, respectively.

• ML algorithms predict before an asth-
ma exacerbation occurs based on data,
including respiratory symptoms, sleep
disturbances, limitation of physical
activity, medication use, and measured
peak expiratory flow.

ML (adaptive
Bayesian net-
work, naïve
Bayesian clas-
sifier, and
SVM)

System valid-
ity testing

AsthmaUnited
States

Finkel-
stein
and
Jeong
[31],
(2017)

• Prediction accuracy of 3 models
ranged from 0.79 to <0.86 accord-
ing to tested cases.

• ML algorithms–based system (myAir-
Coach) conducts short-term prediction
of asthma control levels for real-time
personalized guidance and long-term
prediction of exacerbation risk.

ML (SVM,
RF, and Ad-
aBoost)

System valid-
ity testing

AsthmaUnited
Kingdom

Kocsis
et al
[32],
(2017)

• Prediction accuracy of 4 models
was good for predicting exacerba-
tion 7 d in advance.

• RF algorithm had an overall
greater accuracy, and SVM was
effective for predicting the true
positive cases.

• ML algorithms–based system (myAir-
Coach) conducts an estimation of the
risk of asthma exacerbation 7 d ahead
based on data.

ML (Ad-
aBoost, SVM,
RF, and naïve
Bayesian)

System valid-
ity testing

AsthmaGreeceAnasta-
siou et
al
[33],
(2018)

• The median system usability score
was 73.75 out of 100 (n=8).

• A conversational AI (Avachat) pro-
vides crisis support during acute exac-
erbation periods and information at the
time of diagnosis.

• Patients can be motivated to perform
self-management and receive emotion-
al support during periods of low
moods.

Conversation-
al AI

Usability
testing

COPDnUnited
Kingdom

Easton
et al
[52],
(2019)

• Prediction accuracy of the RF al-
gorithm was the best at 0.80.

• SVM and RF classifiers were su-
perior in all cases compared to the
AdaBoost and naïve Bayesian.

• ML algorithms–based system (myAir-
Coach) conducts short-term prediction
of asthma control levels and long-term
prediction of exacerbation risks in the
myAirCoach decision support.

ML (SVM,
RF, Ad-
aBoost, and
Bayesian Net-
work)

System valid-
ity testing

AsthmaGreeceKocsis
et al
[34],
(2019)

• Prediction accuracy of the DL
model with intrasubject and inter-
subject settings ranged from 0.92
to 0.94.

• The DL model, using recurrent neural
networks with long short-term memory
units and spectrogram features, was
tested to monitor medication adher-
ence.

• The DL model-based audio signal
segmentation approach monitors med-
ication adherence by detecting pressur-
ized metered-dose-inhaler audio
events.

DL (recurrent
neural net-
works)

System valid-
ity testing

Asthma
and
COPD

GreecePettas
et al
[46],
(2019)

System valid-
ity testing

AsthmaUnited
Kingdom
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Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

Tsang
et al
[58],
(2020)

• Prediction accuracy of both logis-
tic regression and naïve Bayesian
algorithm was the best at 0.87.

• ML algorithms classify whether a pa-
tient is stable or unstable and allow
early warning of asthma aggravation.

ML (decision
tree, logistic
regression,
naïve
Bayesian, and
SVM)

• Prediction accuracy of artificial
neural network to predict self-
management ability was 0.94 with
21 d of consecutive data.

• Data regarding symptoms and self-
management abilities were entered into
an artificial neural network using a 3-
layer model (input, hidden, and output
layers).

• To ensure stability and reproducibility,
a standard feed-forward, multilayer
perceptron neural network was used.

• The model classified participants into
their respective self-management abil-
ity tertiles (low, medium, or high).

DL (artificial
neural net-
work)

System valid-
ity testing

COPDUnited
States

Bugajs-
ki et al
[69],
(2021)

• An AdaBoost model showed 35%
sensitivity and 89% specificity.

• The EasyEnsemble classifier
showed 67% sensitivity and 65%
specificity.

• An interactive cloud-based digital app
(myCOPD) predicts exacerbations be-
fore 1-8 d based on patient-reported
data.

ML (Ad-
aBoost and
EasyEnsemble
classifier)

System valid-
ity testing

COPDUnited
Kingdom

Glyde
et al
[62],
(2024)

• Prediction accuracy of the knowl-
edge management system ranged
from 0.78 to 0.95 depending on
the algorithms and modules.

• ML algorithms–based system
(HEARTEN Knowledge Management
System) classifies patients’ NYHAp
class, predicts adverse events, and esti-
mates treatment adherence and the ad-
herence risk regarding medication and
overall.

ML (RF, logis-
tic model
trees, J48, rota-
tion forest,
SVM, radial
basis function
network,
Bayesian net-
work, naïve
Bayesian, and
simple

CARTo)

System valid-
ity testing

Heart fail-
ure

GreeceTripoli-
ti et al
[35],
(2019)

• After 6 mo, self-confidence in
controlling blood pressure in the
intervention group (n=144) was
greater than in the control group
(n=153).

• There was no difference in the ef-
fect of reducing blood pressure
between the groups.

• Conversational AI–based on propri-
etary algorithms provides support and
tailored coaching to improve self-
management and healthy behaviors.

Conversation-
al AI

Field testing
(2-group
RCT)

Hyperten-
sion

United
States

Persell
et al
[77],
(2020)

• Older age, a lower number of
medications, and being non-Black
are associated with higher use of
this technology.

• AI collects data regarding treatment
compliance and symptoms and gener-
ates 3 types of flags based on the risk.

• Patients are encouraged to maintain
their current medications, diet, and
activities or advised to follow specific
suggestions depending on flags.

Conversation-
al AI

Usability
testing

Heart fail-
ure

United
States

Apergi
et al
[76],
(2021)

• F-measures were high in the 2
models, 0.83 in the logistic regres-
sion classifier and 0.81 in the RF
classifier.

• The F-measure of deep neural
network was 0.83.

• ML algorithms were used to predict
the presence or not of cardiovascular
risk by processing medical records.

• The DL algorithm using deep neural
networks detects heart arrhythmias by
mapping a sequence of electrocardio-
gram waves to a sequence of rhythm
classes.

DL (deep neu-
ral network)
and ML (logis-
tic regression
and RF)

Laboratory
function test-
ing

Cardio-
vascular
disease

ColombiaGomez-
Garcia
et al
[59],
(2021)

Slovenia
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Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

Luštrek
et al
[18],
(2021)

• The mean absolute error of blood
pressure estimation was 9.0/7.0
mm Hg systolic and diastolic
blood pressure.

• F-measure for physical activity
recognition was 0.71. the predic-
tion accuracy of the psychological
profile was 0.89.

• Participants’ (n=56) self-care be-
havior was significantly im-
proved, and rates of depression,
anxiety, and perceived sexual
problems were reduced.

• ML algorithms–based system (Heart-
Man) estimates continuous blood
pressure, monitors physical activity
using the acceleration data, or recog-
nizes motivated, anxious, and de-
pressed feelings from voice and heart
rate.

• DSS provides exercise plans based on
data for patients’ recommendations
tailored to patients’ psychological
profiles.

ML (decision
tree, k-nearest
neighbor,
naïve
Bayesian,
multilayer per-
ceptron, RF,
and SVM)

Field testing
(proof-of-
concept
RCT)

Heart fail-
ure

• The average medication compli-
ance of patients using the re-
minder function significantly im-
proved by more than 20%.

• A chatbot (ViK) generates medication
reminders and provides personalized
responses by interacting with patients.

• Patients can build up emotional attach-
ments with the chatbot, contributing
to their improved quality of life.

Conversation-
al AI

Laboratory
function test-
ing

Breast
cancer

FranceChaix
et al
[53],
(2019)

• Among 60 questions provided to
participants (n=12), 8 (13%) did
not match the appropriate topics.

• The average score of satisfaction
was 2.7 out of 5.

• A chatbot provides appropriate respons-
es to patients about unfamiliar symp-
toms that they experienced.

Conversation-
al AI

Usability
testing

Lung can-
cer

JapanKatao-
ka et
al
[79],
(2021)

• Prediction accuracy was 0.797,
recall was 0.891, and the F1-score
was 0.880.

• AI-based on-facilitator system (Cancer-
ChatCanada) using NLP technology
identifies keywords related to patients’
psychosocial concerns and recom-
mends appropriate resources address-
ing each concern.

NLPUsability
testing

CancerCanadaLeung
et al
[81],
(2022)

• Participants (n=42) reported high
levels of acceptability, feasibility,
and satisfaction.

• There were no significant effects
on psychosocial distress, pain,
sleep disturbance, fatigue, physi-
cal function, or quality of life.

• A virtual assistant using the Amazon
Echo Show with Alexa provides tablet-
based supportive care software (Nurse
AMIEq).

• Nurse AMIE monitors lifestyle behav-
iors, symptoms, and emotional distress
and provides timely recommendations.

Conversation-
al AI

Field testing
(2-group
RCT)

Breast
cancer

United
States

Schmitz
et al
[84],
(2023)

• Participants in the intervention
group (n=50) had significantly
fewer, less severe, and less dis-
tressing symptoms compared to
nurse-led education (n=50) and
the control group (n=50).

• A knowledge-based chatbot
(ChemoFreeBot) interacts with patients
regarding chemotherapy-related self-
management and side effects through
the WhatsApp app.

Conversation-
al AI

Field testing
(3-arm RCT)

Breast
cancer

EgyptTaw-
fik et
al
[85],
(2023)

• 94% were satisfied with the plat-
form, and 98% reported that the
guidance was helpful.

• 84% and 47% used the advice to
guide diet and recommended
recipes, respectively.

• 82% and 88% reported improved
quality of life and symptom man-
agement, respectively.

• An AI-based virtual platform (Ina)
provides ongoing personalized nutri-
tional and symptom guidance via SMS
text based on patient-reported data.

• A team of live oncology-credentialed
dietitians confirms or modifies the
guidance if needed.

Conversation-
al AI

Field testing
(1-group
pretest-
posttest de-
sign)

CancerUnited
States

Buchan
et al
[86],
(2024)

• The overall mean usability score
was 4.28 out of 5 (n=56).

• The chatbot’s accuracy and F
score were 85.2% and 92%, re-
spectively.

• A knowledge-based question-answer-
ing chatbot (GastricFAQ) provides re-
al-time answers for patients’ self-
management after curative gastrecto-
my.

Conversation-
al AI

Usability
testing

Gastric
cancer

South Ko-
rea

Kim
and
Park
[87],
(2024)
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Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

Lau-
Min et
al
[88],
(2024)

• Less than 10% of medication or
symptom-related messages were
identified as incorrect recommen-
dations for participants (n=40).

• Participants reported that medica-
tion reminders are useful but
found symptom management tools
too simple to be helpful.

• A mobile phone text messaging-based
chatbot (PENNY-GI) provides tailored
medication reminders and promotes
medication adherence and toxicity
management.

Conversation-
al AI

Usability
testing

Gastroin-
testinal
cancer

United
States

• Participants (n=161) reported re-
duced median pain scores from 6
(IQR 5-8) to 4 (IQR 3-6) after us-
ing this app.

• The multilayered perceptron artificial
neural network was used to learn from
historical examples, analyze nonlinear
data, and hand imprecise information.

• An AI algorithms–based mobile app
(Well Health) provides the most appro-
priate therapeutic exercise program by
processing data input from patients’
subjective symptom assessment.

DL (artificial
neural net-
work)

Field testing
(1-group
pretest-
posttest de-
sign)

Chronic
pain

ChinaLo et
al
[47],
(2018)

• Prediction accuracy of 3 models
ranged from 0.53 to 0.72 depend-
ing on the algorithms and dataset.

• A model using boosted tree was
the best for predicting referral ad-
vice (κ 0.2-0.4).

• ML algorithms provide referral advice
based on patients’data to help patients
manage their low back pain timely.

ML (decision
tree, RF, and
boosted tree)

Laboratory
function test-
ing

Chronic
pain

Nether-
lands

Nijew-
eme-
d’Hol-
losy et
al
[36],
(2018)

• Participants (n=10) reported in-
creased walking time for a further
4.9 min/d after receiving recom-
mendations from a 5-wk pilot
study.

• There was no difference in the ef-
fect of reducing chronic back pain
according to recommendations.

• The algorithm using reinforcement
learning was used to address the task
of being continuously adaptive.

• The ML algorithm–based system
(MyBehaviorCBP) analyzes self-report-
ed physical activity logs and is used to
generate personalized physical activity
recommendations based on the past
behaviors of patients.

ML (reinforce-
ment learning)

Laboratory
function test-
ing

Chronic
pain

United
States

Rabbi
et al
[43],
(2018)

• The adjusted mean difference in
RMDQr score between groups
was 0.79 at 3 mo, favoring the in-
tervention group after 3 mo.

• Case-based reasoning system (self-
BACK), a branch of knowledge-driven
AI, provides weekly personalized self-
management recommendations and
motivates patients to perform desired
behaviors.

ML (case-
based reason-
ing)

Field testing
(2-group
RCT)

Chronic
pain

Denmark,
Norway

Sandal
et al
[63],
(2021)

• Patients who used the Wysa app
were reported to have improve-
ments in means for depression and
anxiety symptom scores with a
medium effect size (Cohen
d=0.60-0.61).

• The Wysa app, using an anonymous
conversational AI, uses a free text
conversational interface to listen and
respond to patients’distress by provid-
ing evidence-based recommendations.

Conversation-
al AI

Laboratory
function test-
ing

Chronic
pain

United
States

Mehe-
li et al
[78],
(2022)

• A greater portion of participants
in the intervention group (n=168)
reported improvement in 6 mo in
RMDQ (37% vs 19%) and pain
intensity (29% vs 17%) than the
control group (n=110).

• An intelligent agent used reinforce-
ment learning to learn to progressively
refine decisions based on probabilistic
trials of new choices with feedback
about the response.

• The intelligent agent adjusts the
modality of therapist interactions and
provides recommendations based on
response.

ML (reinforce-
ment learning)

Field testing
(2-group
RCT)

Chronic
pain

United
States

Piette
et al
[19],
(2022)

DL (artificial
neural net-
work)

Chronic
pain

United
States
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Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

Field testing
(prospective,
multicenter,
single-arm
clinical trial)

Barrev-
eld et
al
[73],
(2023)

• Participants reported significantly
reduced pain interference scores
at 6 wk (n=41) and sustained at
12 wk (n=34).

• 57.5% and 72.5% of participants
demonstrated statistically signifi-
cant MIDs for pain and physical
function, respectively.

• 100% and 81.3% of participants
demonstrated an improvement in
depression and anxiety scores, re-
spectively.

• The cloud-based AI app (PainDrain-
erTM) provides digital information
material daily via a tablet, smartphone,
or computer.

• The AI engine analyzes patient-report-
ed data regarding pain, sleep, work,
physical activity, leisure time, and
housework; predicts pain levels; allevi-
ates pain; and increases psychological
flexibility.

• The AI-based app adjunct to usual
care did not significantly improve
musculoskeletal health compared
to control groups at 3 mo (n=294).

• A knowledge-based AI decision sup-
port app (SELFBACK) provides
weekly tailored self-management rec-
ommendations for physical activity
and exercise and motivates the desired
behavior.

ML (case-
based reason-
ing)

Field testing
(multiarm
parallel-
group RCT)

Chronic
pain

NorwayMar-
cuzzi
et al
[65],
(2023)

• Prediction accuracy in adherence
detection was 0.78 with only 1
sensor worn on either of the
wrists.

• ML algorithm monitors medication
adherence by tracking wrist motions
recognized as a logical sequence of
motions.

ML (decision
tree)

Laboratory
function test-
ing

Patients
taking
medica-
tions

United
States

Hezar-
jaribi
et al
[42],
(2016)

• Prediction accuracy ranged from
0.73 to 0.84 for taking medication,
pills, and getting water.

• ML using activity recognition, devel-
oped as possibilistic network classi-
fiers, was used to monitor patients’
daily activities, infer whether they took
medications, and provide reminders.

• The agent encouraged patients to
maintain appropriate behaviors or
change inappropriate behaviors by
evaluating adherence and sending
messages.

OthersSystem valid-
ity testing

Patients
taking
medica-
tions

CanadaRoy et
al
[57],
(2017)

• The mean squared error between
recommended and real dosage in
the models ranged from 0.0297 to
0.4711.

• 2 ML-based approaches were selected
to test: model predictive control and
neural networks using a simple feed-
forward network.

• ML approaches predict and recom-
mend the next dosage of anticoagula-
tion medication by tracking data, in-
cluding the INRt value.

ML and DLSystem valid-
ity testing

Anticoag-
ulation
therapy

GermanyKrumm
et al
[37],
(2018)

• Participants reported the technolo-
gy was acceptable and feasible.

• Older age was associated with less
comfort and more hesitancy in
using the technology.

• Intelligent AI implemented in an aug-
mented reality headset manages infor-
mation related to medication plans,
restrictions, and patient preferences
and sensor input data to help patients
select the right medication and dis-
pense pills in a pillbox following the
prescription.

OthersUsability
testing

Patients
taking
medica-
tions

SwedenBlusi
and
Nieves
[56],
(2019)

• Insulin pen administration events
were detected with 87.58% sensi-
tivity and 96.06% specificity.

• Inhaler administration events were
detected with a 91.08% sensitivity
and 99.22% specificity.

• AI algorithm using neural networks
detects medication administration and
whether the patient has followed the
required steps of handing the medica-
tion device and generates an alert if
needed.

DL (neural
network)

Laboratory
function test-
ing

Patients
taking
medica-
tions

United
States

Zhao
et al
[70],
(2021)

ML (J48, EMu

clustering)

Laboratory
function test-
ing

StrokeUnited
Kingdom
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Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

Munoz-
Or-
ganero
et al
[38],
(2016)

• In a 10-m walk test (repeated 6
times), there were significant dif-
ferences in interstride variation
computed in this study between
stroke survivors (n=14) and
healthy control groups (n=10).

• The J48 classification algorithm and
EM clustering were used to classify
walking patterns.

• ML algorithms analyze and classify
patients’ walking strategies, and the
data is translated into feedback to help
patients with stroke effectively self-
manage rehabilitation.

• The average cumulative adherence
was 90.5%.

• After a 12-wk study, adherence
based on plasma drug concentra-
tion levels was 100% in the inter-
vention group (n=15) and 50% in
the control group (n=12).

• An AI platform using neural network
(AiCure) identifies the patient, medica-
tion, and confirmed ingestion and pro-
vides reminders and dosing instruc-
tions.

DL (neural
network)

Field testing
(2-group
RCT)

Stroke
with anti-
coagula-
tion thera-
py

United
States

Labovitz
et al
[51],
(2017)

• Prediction accuracy ranged from
0.60 to 0.95 according to types of
exercise.

• The DL algorithm using a back propa-
gation neural network calculates mo-
tion data measured by wearable sen-
sors and is applied in the motion
recognition procedures of sensors for
the rehabilitation of patients with
frozen shoulders.

DL (Propaga-
tion neural
network)

Usability
testing

Frozen
shoulder

TaiwanLin et
al
[45],
(2015)

• Prediction accuracy was similar
in the 2 models, as it was >0.85
for ambulation status and ranged
from 0.76 to 0.86 for nonambula-
tion outcomes.

• 2 algorithms were selected to test: lo-
gistic regression and artificial neural
networks.

• ML algorithms predict longer-term
functional outcomes and independence
for self-care activities at the time of
hospital discharge in patients with
spinal cord injuries.

DL (artificial
neural net-
works) and
ML (logistic
regression)

System valid-
ity testing

Spinal
cord in-
jury

United
States

Bel-
liveau
et al
[39],
(2016)

• Prediction accuracy in calorie in-
take estimation was 89.7%.

• NLP-based system (EZNutriPal) ex-
tracts dietary information and monitors
nutrition intake for patients with
chronic diseases from speech and free
text.

NLPUsability
testing

Chronic
condi-
tions

United
States

Hezar-
jaribi
et al
[54],
(2019)

• The system can achieve a macro
precision of up to 0.970 and over-
all mean average precision scores
of up to 0.628.

• NLP is used in health recommender
systems to provide tailored educational
materials for patients with chronic
diseases.

NLPSystem valid-
ity testing

Multiple
chronic
diseases

ChinaWang
et al
[80],
(2020)

• After 9 wk, 67.6% of total partici-
pants (n=39) reported total symp-
tomatic resolution after the study.

• There was significant improve-
ment in symptoms and quality of
life.

• The ML algorithm based on supervised
learning (a combination of gradient
descent, regularization, and recursive
elements) was selected to test.

• The ML algorithm predicts trigger
foods associated with adverse symp-
toms and is used to provide personal-
ized elimination diets for patients.

MLLaboratory
function test-
ing

Inflamma-
tory bow-
el dis-
eases, irri-
table
bowel
syndrome

United
States

Jactel
et al
[64],
(2023)

• The overall usability score of the
chatbot was 81.5, showing excel-
lent usability.

• The AI chatbot (ESTOMABOT) com-
municates with patients about ostomy
management via web chat interfaces.

Conversation-
al AI

Usability
testing

Patients
with osto-
my

BrazilMora-
to et al
[89],
(2023)

Conversation-
al AI

Field testing
(1-group
pretest-
posttest de-
sign)

Chronic
kidney
disease

TaiwanCheng
et al
[90],
(2023)
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Main resultsSelf-management components supported
by AI.

Type of AIaEvaluation
stage of each
study

Chronic
condi-
tions

CountryAu-
thor
(year)

• The average satisfaction scores
were 4.5 out of 5 (n=297).

• Infection rates of exit site and
tunnel infection were reduced
(P=.049 and .02).

• The peritonitis rate decreased
from 0.98 to 0.8 per 100 patient
months.

• The AI chatbot (PD AI Chatbot),
combined with social media (LINE
Application), provides a patient inter-
face that includes content regarding
peritoneal dialysis management, clini-
cal reminders, diet, and resources.

• The KidneyOnline app reduced
the risk of composite kidney out-
come and the mean arterial pres-
sure.

• An AI-based mobile app (KidneyOn-
line) provides interpretation of disease
conditions, lifestyle guidance, regular
check-ups, early warnings, real-time
answers, and clinical reminders based
on patient-reported data.

• Patients take photos of their medical
records, test results, and clinical pre-
scriptions and upload them onto the
mobile app.

ML (optical
character
recognition)

Laboratory
function test-
ing

Chronic
kidney
disease

ChinaLiu et
al
[66],
(2023)

• Lucy LiverBot was perceived as
a reliable source of information.

• Participants identified the chatbot
as a potential educational tool and
device that could act as a social
companion to improve emotional
well-being.

• The AI chatbot (Lucy LiverBot) pro-
vides targeted health information re-
garding disease, medication, and nutri-
tion and monitors health behaviors via
tablet.

• The chatbot acts as a social companion
and improves patient engagement and
self-management.

Conversation-
al AI

Usability
testing

Chronic
liver dis-
ease

AustraliaAu et
al
[83],
(2023)

aAI: artificial intelligence.
bML: machine learning.
cSVM: support vector machine.
dRF: random forest.
eDL: deep learning.
fRCT: randomized controlled trial.
gHbA1c: glycated hemoglobin.
hOthers represent nonspecified AI technologies.
iNLP: natural language processing.
jAdaBoost: adaptive boosting.
kDSS: decision support system.
lABBA: adaptive basal-bolus algorithm.
mDRL: deep reinforcement learning.
nCOPD: chronic obstructive pulmonary disease.
oCART: Classification and Regression Trees.
pNYHA: New York Heart Association.
qAMIE: Addressing Metastatic Individuals Everyday.
rRMDQ: Roland Morris Disability Questionnaire.
sMID: minimal important difference.
tINR: international normalized ratio.
uEM: expectation-maximization.

Medical Self-Management
Most studies (45/66, 68%) used AI technologies to support the
medical self-management of patients with chronic conditions.
Four categories of self-management supporting functions include
(1) personalized recommendations for medication or
treatment-related decision-making, (2) promoting medication

adherence and safety, (3) predicting physiological indicators or
clinical outcomes, and (4) specific disease management, such
as cancer.

First, AI technologies were used to provide patients with
personalized recommendations for medication or
treatment-related decision-making (13/45, 29%)
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[19,36,37,44,49,52,55,66,67,83,89,90,92]. AI-based systems
recommended daily insulin basal rates, prandial insulin doses,
or insulin bolus doses for patients with diabetes [44,49,67] and
the next medication dosage for patients receiving anticoagulation
therapy [37]. These AI systems used ML and DL technologies
to optimize real-time medication adjustments. For example,
algorithms based on neural networks or RL were used to tailor
insulin dosages in continuous glucose monitoring. In addition,
AI-based mobile systems were used to provide personalized
coaching and feedback based on glucose levels through a
continuous glucose monitoring system or on patient-reported
health data (eg, blood glucose, ketonuria, diet, blood pressure,
and physical activity) among patients with diabetes [55,92].
ML algorithms, including RL, DT, and RF, were tested to
provide referral advice or adjust the modality of therapist
interaction among patients with chronic pain [19,36]. A mobile
app (KidneyOnline [66]) used optical character recognition to
extract data from patient-uploaded photos of medical records
and provided tailored clinical reminders among patients with
chronic kidney disease. Finally, 4 (31%) studies used AI
chatbots integrated with social media platforms or web chat
interfaces to provide personalized recommendations for
managing specific disease conditions, including exacerbations
of COPD [52], chronic liver disease [83], peritoneal dialysis
[90], and ostomy care [89]. Most studies (9/13, 69%) in this
category were at the stages of evaluations of system validity or
human-computer interaction. Only 31% (4/13) of the studies
conducted field testing [19,55,90,92].

Second, AI technologies were used to promote medication
adherence and safety (8/45, 18%) [42,46,51,56,57,68,70,75].
For example, DL algorithms based on neural networks detected
insulin adherence using continuous glucose monitoring and
injection data [68] and inhaler administration by audio signal
[46]. AI-based systems with ML algorithms adopted DT and
activity recognition to monitor and detect medication adherence
by tracking patients’ wrist motions [42] or patients’ daily
activities [57]. Furthermore, 2 (25%) studies used neural
networks to improve medication adherence and safety by
detecting medication administration patterns, identifying
whether the patient followed the appropriate medication device
handling steps, and providing reminders and instructions about
dosage [51,70]. An intelligent virtual assistant–based system
(VASelfCare [75]) supported medication adherence by
interacting with patients with diabetes. Finally, an intelligent
agent implemented in an augmented reality headset helped
patients select the right medication and dispense pills as
prescribed among patients taking complex medication regimens
[56]. Most studies (7/8, 88%) in this category were at the stage
of evaluations of system validity or human-computer interaction.
Only 1 study conducted field testing [51].

Third, AI technologies were used to predict patients’
physiological indicators or clinical outcomes (19/45, 42%)
[18,30-35,40,48-50,58-62,72,73,76]. Most studies used ML and
DL technologies, such as multiple ML algorithms, including
linear regression, logistic regression, RF, SVM, and adaptive
boosting, to predict either blood glucose levels or hypoglycemia
events based on patients-reported health data (eg, diet, blood
glucose, or medication) or continuous glucose monitoring data.

For example, DL algorithms based on neural networks were
used to predict blood glucose levels among patients with
diabetes by analyzing patients’ intake of carbohydrates, physical
activity, or weight [48-50,72]. A mobile-based AI system
(forDiabetes [60]) used ML and DL technologies to predict
next-day hypoglycemia events in daily life based on the data
input from a mobile app and portable devices. Studies among
patients with respiratory diseases also tested multiple ML
algorithms, including SVM, RF, and adaptive boosting, to
predict the risk of asthma exacerbation and generate early
warnings of aggravation based on patient health data, such as
respiratory symptoms, sleep, physical activity, medication, and
measured peak expiratory flow [31-34,58]. An interactive
cloud-based digital app (myCOPD [62]) predicts exacerbations
of COPD before 1 to 8 days based on patient-reported data. In
addition, ML and DL algorithms were tested to predict adverse
events and continuous blood pressure, classify the extent of
heart failure, identify heart arrhythmia among patients with
cardiovascular disease [18,35,59], and predict pain levels in
patients with chronic pain [73]. Only 1 study used conversational
AI to predict heart failure risk based on collected data from
patients regarding treatment adherence and symptoms [76].
Most studies (14/19, 74%) in this category were at the stage of
evaluations of system validity. Some (5/19, 26%) studies
conducted evaluations of human-computer interaction [49,59,76]
or field testing [18,73].

Finally, AI technologies were used for specific disease
management, such as cancer management (6/45, 13%)
[53,79,84,85,87,88]. All studies used conversational AI, such
as a chatbot or a virtual assistant. Chatbots were reported to
support the management of oral anticancer agents and cancer
treatment–related symptoms by providing medication reminders,
promoting medication adherence, and managing toxicity
[53,79,88]. Knowledge-based chatbots were developed and
tested with patients to manage chemotherapy-related side effects
management via the WhatsApp (Meta Platforms) app and to
provide real-time question-answering support for patients after
curative gastrectomy [85,87]. Finally, a virtual assistant
implemented in a tablet supported symptom management and
provided timely recommendations for patients with breast cancer
[84]. Most studies (4/6, 67%) in this category were at the stage
of evaluations of human-computer interaction. Only 2 (33%)
studies conducted field testing [84,85].

Behavioral Self-Management
Over one-third of the studies (27/66, 41%) used AI technologies
to assist in the behavioral self-management of patients with
chronic conditions. Two categories of behavioral
self-management support include (1) personalized
recommendations and feedback on patients’ lifestyles and
healthy behaviors and (2) predicting and monitoring health
behavior outcomes.

Most of the studies (21/27, 78%) fell into the first category,
offering personalized recommendations and feedback on
patients’ lifestyles and healthy behaviors
[17,18,41,43,47,54,63-66,74-77,80,82,84,86,90-92]. Various
AI technologies, such as conversational AI, NLP, ML, and DL,
were used to provide personalized support related to diet,
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physical activity, and other lifestyles for patients with chronic
conditions. For example, conversational AI–based systems,
such as chatbots and intelligent virtual assistants, offered tailored
support based on interactions with patients and the analysis of
their previous data, particularly for those with diabetes
[17,74,75,82]. Conversational AI was also used to make
recommendations regarding diet or physical activity based on
patient-reported free text or speech among patients with
cardiovascular diseases [76,77] and multiple chronic conditions
[54,80].

AI-based virtual assistant platforms supported lifestyle behaviors
and nutrition monitoring via patient-reported data submitted
through tablets or SMS text messaging among patients with
cancer [84,86]. An AI chatbot (PD AI Chatbot [90]) used in
conjunction with a social media application provided diet
information tailored to patients with chronic kidney disease
undergoing peritoneal dialysis. In addition, AI systems delivered
recommendations to help patients track their sleep, physical
activity, or other health behaviors via mobile apps [66,92].
These systems also offered nutritional support by translating
ML algorithms outputs concerning meal patterns and blood
glucose levels [91].

An ML algorithm using the SVM classifier implemented in a
smartphone app was tested to classify food types and volumes,
thereby calculating carbohydrates to aid diet management for
patients with diabetes [41]. A supervised learning-based ML
algorithm was explored to tailor diets for patients with
inflammatory bowel diseases or irritable bowel syndrome by
analyzing the association between trigger foods and adverse
symptoms [64]. The AI-based system (HeartMan [18]) evaluated
multiple ML algorithms, including DT, RF, and SVM, to
monitor physical activity using acceleration data, providing
personalized exercise plans among patients with heart failure.
Moreover, ML algorithms, such as RL and case-based reasoning,
were tested to deliver customized physical activity
recommendations based on patient-reported data and activity
logs for those with chronic diseases [43,63,65]. Finally, a
mobile-based AI app (Well Health [47]) used a multilayered
perceptron artificial neural network to analyze and process data
from patients’ subjective symptom assessment, offering
appropriate therapeutic exercise programs for patients with
chronic pain. Studies (17/21, 81%) in the first category of
behavioral self-management support were at the stage of
evaluations of human-computer interaction or field testing. Only
4 (19%) studies remained at the stage of system validity testing
[41,75,76,80].

In the second category, AI technologies, primarily ML and DL
algorithms, were used to predict and monitor patients’ health
behavior outcomes (8/27, 30%) [18,35,38,39,45,69,71,84]. For
instance, multiple ML algorithms, including RF, SVM, and DT,
were tested to predict treatment adherence, adherence-related
risks, or physical activity among patients with heart failure
[18,35]. A DL algorithm using artificial neural networks was
used to process data on symptom self-management ability,
classifying it into 3 levels among patients with COPD [69]. ML
algorithms using J48 and expectation-maximizataion clustering,
along with a neural network trained using backpropagation,
were used to monitor rehabilitation by analyzing walking

strategies or calculating motion data from wearable sensors
among patients with stroke [38] and frozen shoulders [45]. ML
algorithms based on logistic regression and artificial neural
networks were tested to predict ambulation status and
independence at hospital discharge among patients with spinal
cord injuries [39]. An AI-based mobile platform (Auto-Check
Care [71]) used a convolutional neural network to integrate diet
and nutritional data from photographs taken by patients with
diabetes. Only one study used a conversational AI–based virtual
assistant to monitor physical activity among patients with breast
cancer [84]. Studies (5/8, 63%) in this category focused on
evaluating system validity or human-computer interaction, while
only 3 (37%) of studies conducted field testing [18,71,84].

Emotional Self-Management
A few studies (14/66, 21%) used AI technologies to support the
emotional self-management of patients with chronic conditions.
Two categories of emotional self-management support include
(1) providing personalized emotional support and (2) motivating
patients to perform self-management.

AI technologies were used to provide personalized support for
emotional psychosocial concerns (9/14, 64%)
[18,52,53,73,75,78,81,83,84]. Several studies used
conversational AI technologies, such as virtual assistants,
chatbots, and NLP, to encourage emotional expression, build
emotional attachments, identify psychosocial concerns, and
help deal with psychosocial concerns among patients with
diabetes [75], COPD [52], chronic liver disease [83], chronic
pain [78], and cancers [53,81,84]. In addition, 2 (14%) studies
used ML and DL technologies to recognize emotions and
manage psychological well-being. An AI-based decision support
system (HeartMan [18]) tested multiple ML algorithms to
recognize motivated, anxious, and depressed feelings from the
voice and heart rate of patients with heart failure. A cloud-based
AI application (PainDrainerTM [73]) used artificial neural
networks to analyze patient-reported data regarding pain, sleep,
work, physical activity, leisure time, and housework to manage
pain and increase psychological flexibility among patients with
chronic pain. Most studies (8/9, 89%) in this category were at
the stage of evaluations of human-computer interaction or field
testing. Only 1 study remained at the stage of system validity
testing [75].

In addition, AI technologies, such as conversational agents and
ML technologies, were used to motivate patients to perform
self-management (6/14, 42%) [17,52,57,63,65,74]. Studies used
conversational AI to encourage patients to perform
self-management by communicating with patients and providing
motivational messages to reduce difficulty in conducting specific
tasks among patients with diabetes [17,74]. An AI chatbot
(Avachat [52]) was tested to provide motivational support for
patients with COPD to engage in general self-management
during periods of low moods. A knowledge-based AI decision
support app (selfBACK [63,65]) used case-based reasoning to
provide tailored self-management recommendations for patients
with chronic pain and motivate and reward them for following
the recommendations. Finally, an ambient intelligent system
used a multiagent activity recognition approach to monitor and
motivate patients’ self-management activities, such as

J Med Internet Res 2025 | vol. 27 | e59632 | p. 20https://www.jmir.org/2025/1/e59632
(page number not for citation purposes)

Hwang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


medication adherence [57]. Most studies (4/6, 67%) in the
category of emotional self-management were at the stage of
evaluations of system validity or human-computer interaction.
Only 2 (33%) studies conducted field testing [17,63,65].

Discussion

Principal Findings
To the best of our knowledge, this study is the first to provide
a comprehensive overview of AI applications for
self-management of chronic conditions, categorizing them
according to their developmental stage based on 3 essential
self-management tasks: medical, behavioral, and emotional
self-management. Our review indicates that most studies have
concentrated on enhancing medical or behavioral
self-management tasks, and fewer focus on emotional
self-management supported by AI. In addition, the current stage
of AI applications for chronic condition self-management largely
remains in the algorithm development and early feasibility
testing phases, except for providing lifestyle recommendations
and personalized emotional support. Among chronic conditions,
diabetes was the most frequently studied, with the primary focus
of most studies on evaluating the prediction accuracy and
validity of the algorithms. Meanwhile, AI-based interventions
have been relatively more developed for conditions targeting
chronic pain management using ML and DL techniques, as well
as for conditions where conversational AI supports
self-management among patients with cancer. This study has
expanded on previous research by identifying how AI supports
self-management, focusing on specific tasks and categorizing
the application of AI support for chronic condition
self-management into technology development stages.

Advancements in AI technologies provide a significant
opportunity to empower patients to effectively perform essential
self-management tasks and enhance the quality of life in home
settings by fostering patient engagement in managing chronic
conditions [48,93-95]. Our review confirmed the capability of
AI, enabling patients with various chronic conditions to make
informed day-to-day decisions about managing their diseases
based on AI-generated solutions and shared information [96].
In addition, findings from the field testing of AI technologies
revealed the potential effectiveness of AI applications for
self-management in the real world. For instance, most RCTs
reported significant effectiveness of AI-based interventions on
improved health outcomes, including blood glucose levels, pain,
symptom distress, treatment adherence, and quality of life
[17-19,51,63,71,85]. This suggests that AI applications in
managing chronic conditions have not only augmented patients’
self-management capabilities but also ensured a more proactive
and comprehensive care model.

There are several potential interpretations of the early
development stage and testing of AI technology for chronic
condition self-management. Our review highlighted that many
studies using AI technologies to predict physiological indicators
or clinical outcomes, such as blood glucose levels or the risk
of adverse events, primarily focused on algorithm development.
The types and performance of these algorithms vary across the
studies. Most validation studies predicting blood glucose or

hypoglycemic events among patients with diabetes are
frequently conducted, with prediction accuracy of ML and DL
algorithms reported ranging from 63% to over 90% [30,40,72].
ML algorithms, including SVM, RF, and adaptive boosting, are
often used to predict the risk of asthma exacerbation; however,
their prediction accuracy varies from 79% to 86% across
different studies [31,32,34]. Given the complexity of individual
health indicators, AI technologies may struggle with limited
data input [48]. For example, distinguishing between
medication-related side effects and symptoms of underlying
diseases and comorbidities could be challenging for both AI
and humans [2]. Therefore, integrating AI-collected health data
with additional predictive factors (such as genetic traits, clinical
variations, or sociodemographic characteristics) could
effectively enhance the accuracy of prediction by leveraging
extensive data streams [31,48]. Moreover, individual differences
and lifestyle variations may further complicate predictions [69],
suggesting the need for a comprehensive approach to multiple
self-management tasks when applying AI technologies for
chronic condition self-management.

Technological or implementation challenges may also contribute
to the early developmental stages of AI applications in chronic
condition self-management. Key technological barriers include
cost, accessibility, and interoperability between devices. For
instance, patients might have concerns about whether AI-based
services are covered by insurance or involve out-of-pocket
expenses [95]. Interoperability involves customizing AI
technologies’ delivery modalities to meet user requirements
and support various types of technology. For example, the
benefits of conversational AI could be significantly enhanced
by personalization and the capability to interact with a range of
digital and domestic devices, such as calendars, smart home
technologies, or medical devices [52]. In addition,
dataset-related issues, such as imbalanced or limited datasets,
pose significant challenges to the implementation and
generalization of AI systems, potentially introducing bias in
decision-making [97]. Adopting balanced evaluation metrics
and data-driven algorithmic models may help mitigate this
potential bias [97].

An important consideration in AI applications for chronic
disease management is ensuring data security and privacy, which
may be achieved through a robust implementation framework
[98]. Traditional ML models, which rely on computational
power and the volume of training data from centralized servers,
often face challenges related to the security and privacy of
patient data [99]. These concerns can limit usability and result
in nonparticipation in studies due to patient-level barriers
[85,88]. Federated learning offers a transformative solution by
enabling organizations to collaboratively analyze massive
datasets without compromising sensitive patient information
[99]. In addition, federated learning can enhance security when
integrated with technologies such as blockchain, which provides
an immutable ledger for storing and preserving information
[99,100]. Furthermore, the nonadoption, abandonment, scale-up,
spread, and sustainability, developed by Greenhalgh et al [101],
provides principles for implementing AI techniques in health
management. Future studies should focus on leveraging these
technologies and frameworks to develop and implement AI
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algorithms that ensure robust data privacy while enhancing
chronic disease self-management.

The chronic nature of many health conditions often leads
patients to experience emotional distress, such as depression,
anxiety, or feelings of isolation [95,102]. Despite the
significance of emotional self-management for individuals with
chronic conditions [8], our findings indicate a lack of focus on
emotional aspects in current AI applications. Several factors
could contribute to this gap. First, the variability in mental health
status means that the criteria for identifying emotional
self-management are not specific enough to produce AI
algorithms with high sensitivity and specificity [103]. Second,
developing effective AI systems require extensive training and
validation using large datasets [94]. The difficulty in accessing
comprehensive and high-quality mental health datasets may
hinder studies aimed at AI-based emotional support [103]. One
viable strategy to address dataset limitations is to leverage
transfer learning, which uses pretrained algorithms to develop
AI systems that support emotional self-management [103,104].
In addition, some patients may prefer direct interaction with
health care providers for managing emotional distress or may
lack the motivation to engage with AI solutions. Therefore, a
blended model that integrates face-to-face support with AI-based
interventions might be more acceptable and effective than
relying solely on AI [52,105]. It is crucial for AI-based systems
to emulate key aspects of human interaction and provide tailored
support aligned with person-to-person care based on
comprehensive needs assessments [52]. This approach ensures
that AI systems are both technically proficient and adaptable
to patients’ diverse emotional needs, thereby enhancing their
ability to manage emotions effectively.

The evaluation of AI applications and their impact on individuals
with chronic conditions reveals a notable lack of uniformity.
Usability tests have uncovered a significant gap between the
development of AI systems and the challenges associated with
transferring algorithms into practical applications. While results
from early-stage feasibility tests show promise, research is
needed to thoroughly understand user experiences and
engagement within everyday living environments. In addition,
given that not all individuals are willing to integrate AI
technologies into their health care, it is crucial to conduct
comprehensive assessments of patients’ needs and attitudes
toward AI for successful implementation [106,107]. Several
studies have raised concerns about the potential loss of control
when AI monitors patients’ lifestyles [2,18], underscoring the
importance of designing AI-based interventions that prioritize
patient empowerment and autonomy rather than mere
supervision. By creating AI-based solutions that enhance patient
empowerment and self-efficacy, patients can make health

data–based decisions, thereby increasing the objectivity and
accuracy of their knowledge without compromising the
subjective and authentic aspects of their experience [96].
Furthermore, although AI systems excel at processing numerous
data points and delivering data-driven insights for disease
self-management, their effectiveness is highly contingent on
patient engagement and the accuracy of the provided data.
Therefore, further research using user-centered design principles
in the system development phase is necessary to ensure that
AI-supported self-management components align with patients’
needs and preferences, addressing potential issues of
nonadoption or low adherence [94]. In addition to conducting
field tests, process evaluations will help to identify barriers and
facilitators to the uptake and engagement of AI-based
interventions from the patients’ perspectives [2].

Limitations
Our review has several limitations. Despite including several
databases in the search process, the specific choice of search
terms may have resulted in some relevant articles being missed,
especially considering the rapid study of AI applications across
multiple areas. However, the increase in publications over the
last 5 years suggests that our search captured a significant period
of research and development in AI for self-management. In
addition, the developmental stages and outcomes reported in
the studies varied, making it a challenge to compare the
effectiveness of AI technologies across different studies.
Furthermore, we only included studies published in English.
As most studies in our review were conducted in high-income
countries, our findings may not be generalizable to diverse
settings. More extensive studies with various samples are needed
to establish evidence on the application of AI across different
geographic and cultural contexts.

Conclusions
AI applications have the potential to empower patients with
chronic conditions to effectively perform self-management tasks
and enhance their quality of life in home settings. Although
most studies are still in the stages of algorithm development or
early feasibility testing, and several challenges related to
technology implementation were identified, AI can offer
personalized medical recommendations, support data-driven
treatment decision-making, encourage the adoption of healthy
lifestyles, and manage emotional distress associated with chronic
condition self-management. This review provides evidence to
guide the development and selection of AI solutions for
supporting self-management in patients with chronic conditions.
However, there is still a long journey ahead to fully integrate
AI applications into self-management practices and achieve
optimal outcomes.
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