Dietary Patterns Consumed During Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review


Carol Byrd-Bredbenner, PhD, RD,^{a,b} Steven A. Abrams, MD,^{a,c} Aline Andres, PhD, RD,^{a,d} Andrea Deierlein, PhD, MPH, MS,^{a,e} Heather A. Eicher-Miller, PhD,^{a,f} Jennifer Orlet Fisher, PhD,^{a,g} Angela Odoms-Young, PhD,^{a,h} Cristina Palacios, PhD, MSc,^{a,i} Sara Scinto-Madonich, MS,^j Julie Nevins, PhD,^j Molly Higgins, MLIS,^k Ramkripa Raghavan, DrPH, MPH, MSc,^j Gisela Butera, MEd, MLIS,¹ Nancy Terry, MS, MLIS¹ Julie Obbagy, PhD, RD^m

^b Rutgers, The State University of New Jersey

- ^d University of Arkansas for Medical Sciences
- ^e New York University
- ^f Purdue University
- ^g Subcommittee Chair; Temple University
- ^h Committee Vice Chair; Cornell University
- ⁱ Florida International University

^k Systematic Review Librarian, NESR Branch, NGAD, CNPP, FNS, USDA

^c University of Texas at Austin

^j Systematic Review Analyst, Nutrition Evidence Systematic Review (NESR) Branch, Nutrition Guidance and Analysis Division (NGAD), Center for Nutrition Policy and Promotion (CNPP), FNS, USDA

¹ Biomedical Librarian/Informationist, National Institutes of Health Library

^m Branch Chief, NESR Branch, NGAD, CNPP, FNS, USDA

Suggested citation: Byrd-Bredbenner C, Abrams SA, Andres A, Deierlein A, Eicher-Miller HA, Fisher JO, Odoms-Young A, Palacios C, Scinto-Madonich S, Nevins J, Higgins M, Raghavan R, Butera G, Terry N, Obbagy J. *Dietary Patterns Consumed During Pregnancy and Risk of Hypertensive Disorders of Pregnancy.* November 2024. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.DGAC2025.SR08

Related citations: 2025 Dietary Guidelines Advisory Committee. 2024. Scientific Report of the 2025 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and Secretary of Agriculture. U.S. Department of Health and Human Services. <u>https://doi.org/10.52570/DGAC2025</u>

Raghavan R, Dreibelbis C, Kingshipp BJ, Wong, YP, Terry N, Abrams B, Bartholomew A, Bodnar LM, Gernand A, Rasmussen K, Siega-Riz AM, Stang JS, Casavale KO, Spahn JM, Stoody E. Dietary Patterns before and during Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review. April 2019. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.PB242018.SR0101

The contents of this document may be used and reprinted without permission. Endorsements by NESR, NGAD, CNPP, FNS, or USDA of derivative products developed from this work may not be stated or implied.

In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons using assistive technology should be able to access information in this report. For further assistance please email <u>SM.FN.NESR@USDA.gov</u>.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at <u>How</u> to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by:

- (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410;
- (2) fax: (202) 690-7442; or
- (3) email: program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

Table of contents

Table of contents	3
Plain language summary	5
Abstract	6
Introduction	7
Methods	8
Develop a protocol	8
Develop an analytic framework	9
Develop inclusion and exclusion criteria	10
Search for and screen studies	13
Extract data and assess the risk of bias	13
Synthesize the evidence	13
Develop a conclusion statement and grade the evidence	14
Recommend future research	15
Peer review	15
Health equity considerations	
Results	16
Literature search and screening results	
Description of the evidence	
Participant characteristics	
Intervention/exposures and comparators	20
Timing of exposure assessment	26
Outcome	26
Synthesis of the evidence	26
Intervention studies	26
Observational studies	
Conclusion statement and grade	
Summary of conclusion statement and grade	31
Research recommendations	
Acknowledgments and funding	82
References of the articles included in the systematic review	83
Appendices	85
Appendix 1: Abbreviations	85
Appendix 2: Conclusion statements from the existing systematic review	
Appendix 3: Inclusion and exclusion criteria comparison between existing and updated systematic reviews	87
Appendix 4: Literature search strategy	95
Search from the existing review	95
Search A:	95
Search B:	
Appendix 5: Excluded articles	
Appendix 6: Dietary pattern visualization	
Table 1. Review history	7
	1

Dietary Patterns Consumed During Pregnancy and Risk of Hypertensive Disorders of Pregnancy

Fable 2. Protocol revisions	9
Table 3. Inclusion and exclusion criteria	. 11
Table 4. Definitions of NESR grades	. 15
Table 5. Dietary Pattern Components	.21
Table 6. Conclusion statement, grade for dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnand	
Table 7. Evidence examining the relationship between dietary patterns consumed during pregnancy and hypertensive disorders of pregnancy	. 33
Table 8. Risk of bias for randomized controlled trials examining dietary patterns consumed during pregnancy and hypertensive disorders of pregnancy	.78
Table 9. Risk of bias for non-randomized controlled trials examining dietary patterns consumed during pregnancy and hypertensive disorders of pregnancy	.79
Table 10. Risk of bias for observational studies examining dietary patterns consumed during pregnancy and hypertensive disorders o pregnancy	

Figure 1. Analytic framework for the systematic review question: What is the relationship between dietary patterns consumed during	
pregnancy and risk of hypertensive disorders of pregnancy?	10
Figure 2. Literature search and screen flowchart	17

Plain language summary

What is the question?

The question is: What is the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy? The population of interest for this question includes individuals during pregnancy.

Why was this question asked?

This systematic review was conducted by the 2025 Dietary Guidelines Advisory Committee as part of the process to develop the *Dietary Guidelines for Americans, 2025-2030.*

How was this question answered?

The Committee conducted a systematic review to answer this question with support from the USDA Nutrition Evidence Systematic Review team. This review updated an existing review that was conducted as part of the Pregnancy and Birth to 24 Months Project.

What is the answer to the question?

A conclusion statement cannot be drawn about the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy because of substantial concerns with consistency, directness, and precision in the body of evidence.

How up-to-date is this systematic review?

Conclusion statements from this review are based on articles published between January 1980 and May 2023.

Abstract

Background

This systematic review was conducted by the 2025 Dietary Guidelines Advisory Committee as part of the process to develop the *Dietary Guidelines for Americans, 2025-2030.* The U.S. Departments of Health and Human Services (HHS) and Agriculture (USDA) appointed the 2025 Dietary Guidelines Advisory Committee (Committee) in January 2023 to review evidence on high priority scientific questions related to diet and health. Their review forms the basis of their independent, science-based advice and recommendations to HHS and USDA, which is considered as the Departments develop the next edition of the *Dietary Guidelines.* As part of that process, the Committee conducted a systematic review with support from the USDA Nutrition Evidence Systematic Review (NESR) team to answer the following question: What is the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy? This review is an update to an existing review that was conducted as part of the Pregnancy and Birth to 24 Months Project.

Methods

The Committee conducted a systematic review using the methodology of the USDA NESR team. The Committee first developed a protocol. The intervention/exposure was dietary patterns consumed during pregnancy, the comparators are different dietary patterns or different levels of adherence to/consumption of the same dietary pattern, and the outcomes were blood pressure (systolic, diastolic), protein in the urine (proteinuria), eclampsia, preeclampsia, and gestational hypertension in individuals during pregnancy. Additional inclusion criteria were established for the following study characteristics: a) use randomized or non-randomized controlled trial, prospective or retrospective cohort, or nested case-control study designs, b) be published in English in peer-reviewed journals, c) be from countries classified as high or very high on the Human Development Index, and d) enroll participants with a range of health statuses. The review excluded studies that exclusively enrolled participants with a disease or that did not control for at least 1 of the key confounders listed in the analytic framework.

NESR librarians conducted a literature search in PubMed, Embase, CINAHL, and Cochrane to identify articles published between January 2017 and May 2023. Two NESR analysts independently screened all electronic results and the reference lists of included articles based on the pre-determined criteria. The results of this search were combined with included articles from the existing review.

NESR analysts extracted data, from each included article, with a second analyst verifying accuracy of the extraction. Two NESR analysts independently conducted a formal risk of bias assessment, by study design, for each included article, then reconciled any differences in the assessment. The Committee qualitatively synthesized the evidence from all included articles identified in the updated literature search and from the existing review, according to the synthesis plan, with attention given to the overarching themes or key concepts from the findings, similarities and differences between studies, and factors that may have affected the results. The Committee developed a conclusion statement and graded the strength of evidence based on its consistency, precision, risk of bias, directness and generalizability.

Results

Conclusion statement and grade:

A conclusion statement cannot be drawn about the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy because of substantial concerns with consistency, directness, and precision in the body of evidence. (Grade: Grade Not Assignable)

Summary of the evidence:

- Thirty-one articles met the inclusion criteria for this review. Twenty-three were prospective cohort studies, 8 were randomized controlled trials, and 1 was a non-randomized controlled trial.
- The direction of results and size of effects were too different across studies to adequately compare and synthesize.
- None of the intervention studies were designed to directly examine the relationship of interest and only a few studies noted having sufficient power to detect differences between groups in the relatively rare HDP outcome.
- In the future, researchers should include populations representative of the U.S. population, conduct well-designed and sufficiently
 powered trials, account for key confounding factors, administer validated dietary assessments early in pregnancy, and evaluate
 dietary patterns against existing indices of dietary quality.

Introduction

To prepare for the development of the *Dietary Guidelines for Americans, 2025-2030*, the U.S. Departments of Health and Human Services (HHS) and Agriculture (USDA) identified a proposed list of scientific questions based on relevance, importance, potential federal impact, and avoiding duplication, which were posted for public comment.^{*} The Departments appointed the 2025 Dietary Guidelines Advisory Committee (Committee) in January 2023 to review evidence on the scientific questions. The Committee's review of the evidence forms the basis of the Scientific Report of the 2025 Dietary Guidelines Advisory Committee,[†] which includes independent, science-based advice and recommendations to HHS and USDA and is considered during the development of the next edition of the *Dietary Guidelines*.

The proposed scientific questions were refined and prioritized by the Committee for consideration in their review of the evidence. As part of that process, the following systematic review question was prioritized: What is the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy (HDP)? The Committee conducted a systematic review to address this question, with support from USDA's Nutrition Evidence Systematic Review (NESR) team. This review is an update to the systematic review conducted by the Pregnancy Technical Expert Collaborative (**Table 1**), and the conclusion statements developed as part of that existing work can be found in **Appendix 2**.

Date	Description	Citation
April 2019	Original systematic review conducted by the Pregnancy Technical Expert Collaborative as part of the Pregnancy and Birth to 24 Months Project published	Raghavan R, Dreibelbis C, Kingshipp BJ, Wong, YP, Terry N, Abrams B, Bartholomew A, Bodnar LM, Gernand A, Rasmussen K, Siega-Riz AM, Stang JS, Casavale KO, Spahn JM, Stoody E. Dietary Patterns before and during Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review. April 2019. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.PB242018.SR0101
May 2023	Systematic review protocol for the 2025 Dietary Guidelines Advisory Committee published online	Fisher JO, Abrams S, Andres A, Byrd-Bredbenner C, Deierlein A, Eicher- Miller H, Odoms-Young A, Palacios C, Obbagy J, Nevins J, Raghavan R, Scinto-Madonich S, Higgins M, Butera G, Terry N. Dietary Patterns Consumed During Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review Protocol. May 2023. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: <u>https://nesr.usda.gov/protocols</u>

Table 1. Review history

^{*} Dietary Guidelines for Americans: Learn About the Process. 2022. Available at: <u>https://www.dietaryguidelines.gov/work-under-way/learn-about-process</u>

[†] 2025 Dietary Guidelines Advisory Committee. 2024. Scientific Report of the 2025 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and Secretary of Agriculture. U.S. Department of Health and Human Services. https://doi.org/10.52570/DGAC2025

Date	Description	Citation
October 2023	Revisions to the systematic review protocol for the 2025 Dietary Guidelines Advisory Committee published online	Fisher JO, Abrams S, Andres A, Byrd-Bredbenner C, Deierlein A, Eicher- Miller H, Odoms-Young A, Palacios C, Obbagy J, Nevins J, Raghavan R, Scinto-Madonich S, Higgins M, Butera G, Terry N. Dietary Patterns Consumed During Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review Protocol. May 2023. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: <u>https://nesr.usda.gov/protocols</u>

Methods

The Committee used NESR's methodology to conduct this systematic review. NESR's methodology is described in detail in its methodology manual, * as well as in the Committee's Scientific Report.[†] This section presents an overview of the specific methods used to answer the systematic review question: What is the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy (HDP)?

This systematic review is an update to an existing NESR systematic review completed as part of the Pregnancy and Birth to 24 Months Project by the Pregnancy Technical Expert Collaborative,[‡] which included evidence published from January 1980 to January 2017. This update synthesized all of the eligible studies from January 1980 to May 2023 to develop and grade the conclusion statement, according to the methods described below. This means that all of the eligible articles from the existing review and the newly published articles were re-synthesized as 1 body of evidence.

Develop a protocol

A systematic review protocol is the plan for how NESR's methodology will be used to conduct a specific systematic review and is established by the Committee, *a priori*, before any evidence is reviewed. The protocol is designed to capture the most appropriate and relevant body of evidence to answer the systematic review question. Development of the protocol involves discussion of the strengths and limitations of various methodological approaches relevant to the question, which then inform subsequent steps of the systematic review process. The protocol describes all of the methods that will be used throughout the systematic review process. Additionally, the protocol includes the following components, which are tailored to each systematic review question: the analytic framework, the inclusion and exclusion criteria, and the synthesis plan. The Committee used the analytic framework and the inclusion and exclusion criteria from the existing review and made adjustments to the protocol, as needed. Differences in the inclusion and exclusion criteria between existing and updated reviews are documented in **Appendix 3**.

^{*} USDA Nutrition Evidence Systematic Review Branch. USDA Nutrition Evidence Systematic Review: Methodology Manual. February 2023. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: <u>https://nesr.usda.gov/methodology-overview</u>

[†] 2025 Dietary Guidelines Advisory Committee. 2024. Scientific Report of the 2025 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and Secretary of Agriculture. U.S. Department of Health and Human Services. <u>https://doi.org/10.52570/DGAC2025</u>

[‡] Raghavan R, Dreibelbis C, Kingshipp BJ, et al. Dietary Patterns before and during Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review. April 2019. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.PB242018.SR0101

The protocol was posted online (<u>https://nesr.usda.gov/protocols</u>) for the public to view and comment on. Revisions to the systematic review protocol were made during the review process. These amendments are documented in **Table 2**.

Table 2. Protocol revisions

Date	Protocol revision	Description	
July 2023	 The inclusion and exclusion criteria for the intervention/exposure and comparator were revised to clarify that: a study must provide a description of the foods and beverages in both the intervention/exposure and comparator groups to be included. studies that examine consumption of and/or adherence to similar dietary patterns of which only a specific component or food source differs between groups are excluded. 	These revisions were made to clarify the inclusion and exclusion criteria for the intervention/exposure and comparator, but do not represent a change in how the criteria were applied. These revisions were made before any evidence was synthesized.	
July 2023	Inclusion and exclusion criteria were added for confounders, specifying that studies must control for at least one key confounder listed in the analytic framework to be included.	This revision was made to enable focus on a stronger body of evidence. The revision was made before any evidence was synthesized.	

Develop an analytic framework

An analytic framework visually represents the overall scope of the systematic review question and depicts the contributing elements that were examined and evaluated. It presents the core elements of each systematic review question, including the **P**opulation (i.e., those who experience the intervention/exposure and/or outcome), Intervention and/or exposure (i.e., the independent variable of interest), **C**omparator (i.e., the alternative being compared to the intervention or exposure), and **O**utcome(s). Definitions for key terms are also included because they provide the basis for how concepts are operationalized throughout the review. The Committee identified key confounders based on their knowledge of nutrition and health research and experience as subject matter experts. Key confounders are participant characteristics, such as demographics, health status, and diet and lifestyle behaviors, and/or other factors related to both the intervention/exposure and the outcome of interest that may impact the relationships of interest. Key confounders were considered during review and evaluation of the evidence, particularly during the risk of bias assessment of non-randomized and observational studies.

Figure 1 is the analytic framework for the systematic review. The intervention or exposure of interest is dietary patterns consumed during pregnancy; the comparators are different dietary patterns or different levels of adherence to/consumption of the same dietary pattern; the outcomes are blood pressure (systolic, diastolic), protein in the urine (proteinuria), eclampsia, preeclampsia, and gestational hypertension in individuals during pregnancy; the key confounders are age, physical activity, race and/or ethnicity, SEP, anthropometry (pre-pregnancy BMI), smoking, parity, diabetes mellitus in the current pregnancy, and history of hypertensive disorders of pregnancy (HDP). The confounders may impact the relationships of interest.

Figure 1. Analytic framework for the systematic review question: What is the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy?

Population	Intervention/ exposure	Comparator	Outcome	Key confounders
Individuals during pregnancy	Consumption of a dietary pattern	 Different dietary pattern(s) Different adherence/ consumption levels to the same dietary pattern 	 In individuals during pregnancy: Blood pressure (systolic, diastolic) Protein in the urine (proteinuria) Eclampsia Preeclampsia Gestational hypertension 	 Age Physical activity Race and/or ethnicity SEP Anthropometry (pre-pregnancy BMI) Smoking Parity Diabetes mellitus in the current pregnancy History of hypertensive disorders of pregnancy

Synthesis organization:

- I. **Population:** Individuals during pregnancy
 - a. **Outcome:** Blood pressure (systolic, diastolic); Protein in the urine (proteinuria); Eclampsia; Preeclampsia; Gestational hypertension

Key definitions:

<u>Dietary patterns</u>: the quantities, proportions, variety, or combination of different foods, drinks, and nutrients (when available) in diets, and the frequency with which they are habitually consumed.

Develop inclusion and exclusion criteria

The inclusion and exclusion criteria provide an objective, consistent, and transparent framework for determining which articles to include in the systematic review (**Table 3**). These criteria ensure that the most relevant and appropriate body of evidence is identified for the systematic review question, and that the evidence reviewed is^{*}:

- Applicable to the U.S. population of interest
- Relevant to Federal public health nutrition policies and programs
- Rigorous from a scientific perspective

^{*}USDA Nutrition Evidence Systematic Review Branch. USDA Nutrition Evidence Systematic Review: Methodology Manual. February 2023. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: <u>https://nesr.usda.gov/methodology-overview</u>

Table 3. Inclusion and exclusion criteria

Category	Inclusion Criteria	Exclusion Criteria	
Study design	 Randomized controlled trials Non-randomized controlled trials* Prospective cohort studies Retrospective cohort studies Nested case-control studies 	 Uncontrolled trials[†] Case-control studies Cross-sectional studies Ecological studies Narrative reviews Systematic reviews Meta-analyses Modeling and simulation studies 	
Publication date Population: Study participants	 January 1980 – May 2023[‡] Human 	Before January 1980, after May 2023Non-human	
Population: Life stage	 At intervention or exposure and outcome: Individuals during pregnancy 	 At intervention or exposure and outcome: Individuals before pregnancy Individuals during postpartum 	
Population: Health status	 Studies that <u>exclusively</u> enroll participants not diagnosed with a disease[§] Studies that enroll <u>some</u> participants: diagnosed with a disease; with the outcome of interest; who became pregnant using Assisted Reproductive Technologies; with multiple gestation pregnancies; pre- or post-bariatric surgery; and/or hospitalized for an illness, injury, or surgery 	 Studies that <u>exclusively</u> enroll participants: diagnosed with a disease;** with the outcome of interest (i.e., studies that aim to treat participants who have already been diagnosed with the outcome of interest); who became pregnant using Assisted Reproductive Technologies; with multiple gestation pregnancies; pre- or post-bariatric surgery; and/or hospitalized for an illness, injury, or surgery^{††} 	
Population: Analytic approach	• Studies that enroll both singleton and multiple gestation pregnancies and present uncombined findings	 Studies that enroll both singleton and multiple gestation pregnancies and only present aggregate findings 	

^{*} Including quasi-experimental and controlled before-and-after studies

[†] Including uncontrolled before-and-after studies

[‡] This review update date range encompasses the original systematic review date range, which included articles published from January 1980 to January 2017

[§] Studies that enroll participants who are at risk for chronic disease were included

^{**} Studies that exclusively enroll participants with obesity were included

^{††} Studies that exclusively enroll participants post-cesarean section were included

Category	Inclusion Criteria	Exclusion Criteria	
Intervention/exposure	 Studies that examine consumption of and/or adherence to a dietary pattern [i.e., the quantities, proportions, variety, or combination of different foods, drinks, and nutrients (when available) in diets, and the frequency with which they are habitually consumed], including, at a minimum, a description of the foods and beverages in the pattern of each intervention/exposure and comparator group Dietary patterns may be measured or derived using a variety of approaches, such as adherence to a priori patterns (indices/scores), data driven patterns (factor or cluster analysis), reduced rank regression, or other methods, including clinical trials Multi-component intervention in which the isolated effect of the dietary pattern on the outcome(s) of interest is provided or can be determined 	 Studies that do not provide a description of the dietary pattern, which at minimum, must include the foods and beverages in the pattern (i.e., studies that examine a labeled dietary pattern, but do not describe the foods and beverages consumed in each intervention/exposure and comparator group) Multi-component intervention in which the isolated effect of the dietary pattern on the outcome(s) of interest is not analyzed or cannot be determined (e.g., due to multiple intervention components within groups) 	
Comparator	 Consumption of and/or adherence to a different dietary pattern Different levels of consumption of and/or adherence to a dietary pattern 	 Consumption of and/or adherence to a similar dietary pattern of which only a specific component or food source is different between groups 	
Outcome(s)	 Blood pressure (systolic, diastolic) Protein in the urine (proteinuria) Eclampsia Preeclampsia Gestational hypertension 	• N/A	
Confounders	• Studies that control for at least one of the key confounders listed in the analytic framework	Studies that do not control for any of the key confounders listed in the analytic framework	
Publication status	Peer-reviewed articles published in research journals	 Non-peer-reviewed articles, unpublished data or manuscripts, pre-prints, reports, editorials, retracted articles, and conference abstracts or proceedings 	
Language	Published in English	Not published in English	
Country	• Studies conducted in countries classified as high or very high on the Human Development Index the year(s) the intervention/exposure data were collected	• Studies conducted in countries classified as medium or low on the Human Development Index the year(s) the intervention/exposure data were collected	

^{*} The classification of countries on the Human Development Index (HDI) is based on the UN Development Program Human Development Report Office (<u>http://hdr.undp.org/en/data</u>) for the year the study intervention occurred or data were collected. If the study does not report the year(s) in which the intervention/exposure data were collected, the HDI classification for the year of publication is applied. Studies conducted prior to 1990 are classified based on 1990 HDI classifications. If the year is more recent than the available HDI values, then the most recent HDI classifications are used. If a country is not listed in the HDI, then the current country classification from the World Bank is used (The World Bank Country and Lending Groups, available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-country-and-lending-groups)

Search for and screen studies

NESR librarians, in collaboration with NESR analysts and the Committee, used the analytic framework and inclusion and exclusion criteria to develop a comprehensive literature search strategy. The literature search strategy included selecting and searching the appropriate bibliographic databases, translating search using syntax appropriate for the databases being searched, and employing search refinements, such as search filters. For existing reviews, search strategies were updated, as appropriate, for each database. The full literature search is documented in **Appendix 4**.

The results of all electronic database searches, after removal of duplicates, were screened independently by 2 NESR analysts using a step-wise process by reviewing titles, abstracts, and full-texts to determine which articles meet the inclusion criteria. Manual searching was conducted to find peer-reviewed published articles not identified through the electronic database search. These articles were also screened independently by 2 NESR analysts at the abstract and full-text levels.

Extract data and assess the risk of bias

NESR analysts extracted all essential data from each included article to describe key characteristics of the available evidence, such as the author, publication year, cohort/trial name, study design, population life stage at intervention/exposure and outcome, intervention/exposure and outcome assessment methods, and outcomes. One NESR analyst extracted the data and a second NESR analyst reviewed the extracted data for accuracy. Each article included in the systematic review underwent a formal risk of bias assessment, with 2 NESR analysts independently completing the risk of bias assessment using the tool that is appropriate for the study design.^{*†‡}

Synthesize the evidence

The Committee described, compared, and combined the evidence from all included studies to answer the systematic review question.[§] Synthesis of the body of evidence involved identifying overarching themes or key concepts from the findings, identifying and explaining similarities and differences between studies, and determining whether certain factors impact the relationships being examined, which includes potential causes of heterogeneity across all included evidence. Extracted data and risk of bias assessments for all included studies were tabulated to visually display results and facilitate synthesis. During synthesis, the Committee considered the effect direction, magnitude, and statistical significance of the results reported across the articles included in the body of evidence. The evidence was synthesized qualitatively without meta-analysis of effect estimates, statistical pooling or conversion of data, or quantitative tests of heterogeneity.

The synthesis plan for this review was designed with the end-use in mind, to inform the Committee's advice to HHS and USDA regarding dietary guidance across life stages. The first level of synthesis organization was by population at intervention or exposure, which includes individuals during pregnancy. Then the evidence was organized by outcome based on the available evidence. When synthesizing dietary patterns evidence, focus was placed on the food and beverage components of the dietary patterns examined in the included studies

^{*} Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019; **366**: I4898.doi:10.1136/bmj.I4898

[†] Sterne JAC, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. *BMJ*. 2016; 355; i4919; doi: 10.1136/bmj.i4919

[‡] Higgins JPT, Morgan RL, Rooney AA, et al. A tool to assess risk of bias in non-randomized follow-up studies of exposure effects (ROBINS-E). *Environment International* 2024 (published online Mar 24); doi: <u>10.1016/j.envint.2024.108602</u>.

[§] USDA Nutrition Evidence Systematic Review Branch. USDA Nutrition Evidence Systematic Review: Methodology Manual. February 2023. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: <u>https://nesr.usda.gov/methodology-overview</u>

(i.e., fruits, vegetables, whole grains, seafood), and not on the "label" or "name" of the pattern assigned by researchers (e.g., Mediterranean). To accomplish this, data visualizations were created to illustrate the components reflected in each dietary pattern studied. These visualizations allowed the Committee to compare and contrast the results across patterns while also identifying common foods and beverages reflected in patterns associated with beneficial, null, or adverse health outcomes.^{*}

Develop a conclusion statement and grade the evidence

After the Committee synthesized the body of evidence, they drafted a conclusion statement. A conclusion statement is one or more summary statements carefully constructed to answer the systematic review question. Each conclusion statement reflects the evidence reviewed, as outlined in the analytic framework (e.g., PICO elements) and synthesis plan, and does not take evidence from other sources into consideration. Conclusion statements do not draw implications and should not be interpreted as dietary guidance. The Committee reviewed, discussed, and revised the conclusion statement until they reached agreement on wording that accurately reflected the body of evidence.

The Committee then graded the strength of the evidence underlying each conclusion statement. They did this using NESR's predefined criteria, based on 5 grading elements: consistency, precision, risk of bias, directness and generalizability of the evidence. Study design and publication bias were also considered.[†]

- <u>Consistency</u>: Consistency considers the degree of similarity in the direction and magnitude of effect across the body of evidence. This element also considers whether differences across the results can be explained by variations in study designs and methods.
- <u>Precision</u>: Precision considers the degree of certainty around an effect estimate for a given outcome. This element considers measures of variability, such as the width and range of confidence intervals, the number of studies, and sample sizes, within and across studies.
- <u>Risk of bias</u>: Risk of bias considers the likelihood that systematic errors resulting from the design and conduct of the studies could have impacted the accuracy of the reported results across the body of evidence.
- <u>Directness</u>: Directness considers the extent to which studies are designed to directly examine the relationship among the interventions/exposures, comparators, and outcome(s) of primary interest in the systematic review question.
- <u>Generalizability:</u> Generalizability considers whether the study participants, interventions and/or exposures, comparators, and outcomes examined in the body of evidence are applicable to the U.S. population of interest for the review.

The Committee assigned an overall grade to each conclusion statement (i.e., strong, moderate, limited, or grade not assignable). The grade communicates the strength of the evidence supporting a specific conclusion statement to decision makers and stakeholders. A conclusion statement can receive a grade of Strong, Moderate, or Limited, and if insufficient or no evidence is available to answer a systematic review question, then no grade is assigned (i.e., Grade Not Assignable) (**Table 4**). The overall grade is not based on a predefined formula for scoring or tallying ratings of each element. Rather, each overall grade reflects the expert group's thorough consideration of all of the grading elements, as they each relate to the specific nuances of the body of evidence under review.

^{*} English LK, Raghavan R, Obbagy JE, et al. Dietary Patterns and Health: Insights From NESR Systematic Reviews to Inform the Dietary Guidelines for Americans. JNEB. 2024 Jan; 56(4):75-87. doi: 10.1016/j.jneb.2023.10.001

[†] Spill MK, English LK, Raghavan R, et al. Perspective: USDA Nutrition Evidence Systematic Review Methodology: Grading the Strength of Evidence in Nutrition- and Public Health-Related Systematic Reviews. Adv Nutr. 2022 Aug 1;13(4):982-991. doi: 10.1093/advances/nmab147

Table 4. Definitions of NESR grades

Grade	Definition
Strong	The conclusion statement is based on a strong body of evidence as assessed by consistency, precision, risk of bias, directness, and generalizability. The level of certainty in the conclusion is strong, such that if new evidence emerges, modifications to the conclusion are unlikely to be required.
Moderate	The conclusion statement is based on a moderate body of evidence as assessed by consistency, precision, risk of bias, directness, and generalizability. The level of certainty in the conclusion is moderate, such that if new evidence emerges, modifications to the conclusion may be required.
Limited	The conclusion statement is based on a limited body of evidence as assessed by consistency, precision, risk of bias, directness, and generalizability. The level of certainty in the conclusion is limited, such that if new evidence emerges, modifications to the conclusion are likely to be required.
Grade Not Assignable	A conclusion statement cannot be drawn due to either a lack of evidence, or evidence that has severe limitations related to consistency, precision, risk of bias, directness, and generalizability.

Recommend future research

The Committee identified and documented research gaps and methodological limitations throughout the systematic review process. These gaps and limitations will be used to develop research recommendations that describe the research, data, and methodological advances that are needed to strengthen the body of evidence on a particular topic. Rationales for the necessity of additional or stronger research are also provided with the research recommendations.

Peer review

This systematic review underwent external peer review in a process coordinated by staff from the National Institutes of Health (NIH). NIH staff identified potential peer reviewers through outreach to a variety of professional organizations to select academic reviewers from U.S. colleges and universities across the country with a doctorate degree, including MDs, and expertise specific to the questions being reviewed. All peer reviewers were external to the *Dietary Guidelines* process, and therefore, current Committee members or Federal staff who supported the Committee or the development of the *Dietary Guidelines* were not eligible to serve as peer reviewers.

The peer review process was anonymous and confidential in that the peer reviewers were not identified to the Committee members or NESR staff, and in turn, the reviewers were asked not to share or discuss the review with anyone. Peer reviewers were made aware that per USDA, Food and Nutrition Service (FNS) agency policy, all peer reviewer comments would be summarized and made public, but comments would not be attributed to a specific reviewer.

Peer review occurred after draft conclusion statements were discussed by the full Committee at its third, fourth, fifth, and sixth public meetings. NIH staff assigned and distributed the reviews to at least 2 peer reviewers based on area of expertise. Following peer review, the Committee reviewed and discussed comments and made revisions to the systematic review, as needed, based on the discussion.

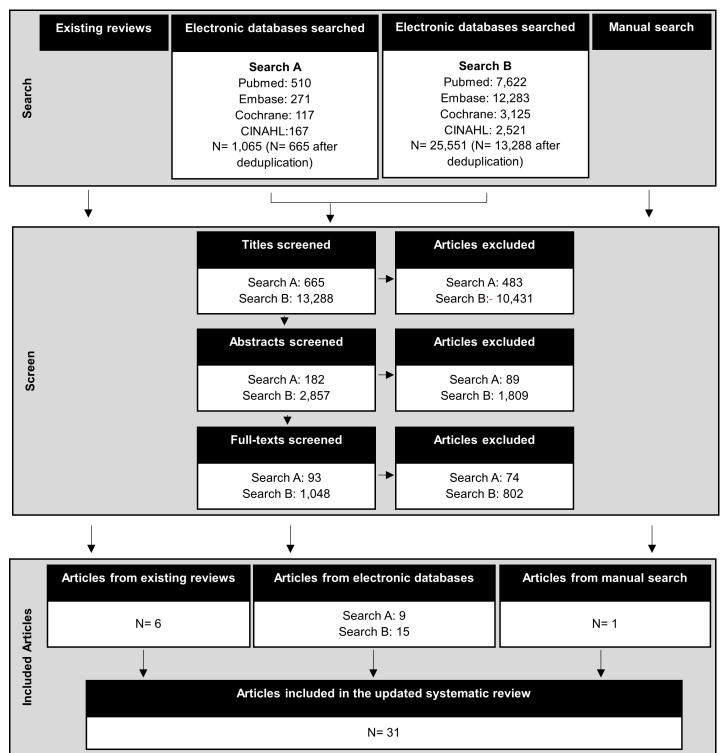
Health equity considerations

The Committee was charged by HHS and USDA to review all scientific questions with a health equity lens to ensure that the next edition of the *Dietary Guidelines* is relevant to people with diverse racial, ethnic, socioeconomic, and cultural backgrounds. The Committee made a number of health equity considerations throughout the NESR systematic review process. The Committee's Scientific Report^{*} includes a more detailed discussion of their approach to applying a health equity lens to their review of evidence, but examples include consideration of key confounders relevant to health equity and assessment of generalizability of the evidence.

Results

Literature search and screening results

Articles included in this systematic review were identified from literature searches conducted to identify all potentially relevant articles for 3 systematic reviews assessing the relationship between dietary patterns and HDP, gestational diabetes mellitus,[†] and cardiovascular disease.[‡] Literature search A (**Appendix 4**) regarding dietary patterns and HDP and gestational diabetes mellitus yielded 665 search results after the removal of duplicates (see **Figure 2**). Dual-screening resulted in the exclusion of 483 titles, 89 abstracts, and 74 full-text articles. Literature search B (**Appendix 4**) regarding dietary patterns and HDP and cardiovascular disease yielded 13,288 search results after the removal of duplicates (see **Figure 2**). Dual-screening resulted in the exclusion of 10,431 titles, 1,809 abstracts, and 802 full-text articles. Reasons for full-text exclusion are in **Appendix 5**. Six additional articles were identified from the existing systematic review[§] and 1 additional article was identified from the manual search. The body of evidence included 31 articles:


^{* 2025} Dietary Guidelines Advisory Committee. 2024. Scientific Report of the 2025 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and Secretary of Agriculture. U.S. Department of Health and Human Services. https://doi.org/10.52570/DGAC2025

[†] Andres A, Abrams SA, Byrd-Bredbenner C, et al. *Dietary Patterns Consumed During Pregnancy and Risk of Gestational Diabetes Mellitus: A Systematic Review*. November 2024. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.DGAC2025.SR07

[‡] Anderson CAM, Gardner C, Talegawkar S, et al. *Dietary Patterns and Risk of Cardiovascular Disease: A Systematic Review*. November 2024. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.DGAC2025.SR13

[§] Raghavan R, Dreibelbis C, Kingshipp BJ, et al. Dietary Patterns before and during Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review. April 2019. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.PB242018.SR0101

Figure 2. Literature search and screen flowchart

Description of the evidence

This systematic review included 31 articles from 22 studies, including 23 articles from 16 prospective cohort studies (PCS),¹⁻²³ 8 articles from 6 randomized controlled trials (RCT),²⁴⁻³¹ and 1 article from 1 non-randomized controlled trial (NRCT),³⁰ that address the relationship between dietary patterns during pregnancy and risk of hypertensive disorders of pregnancy (see **Table 7**). Articles were from countries classified as high or very high on the Human Development Index^{*}, published between January 1980 and May 2023, and enrolled participants during pregnancy who were generally healthy, including those with overweight and obesity.

The analytic sample size for RCT and NRCT ranged from 260³⁰ to 1,137,²⁴ with most of the trials including at least 500 participants.^{24-28, 31} For PCS, the analytic sample size ranged from 55¹⁸ to 72,072,¹⁰ but most had approximately 1,000 or more.^{1, 2, 4, 5, 7, 8, 10, 12-17, 19-23}

Six articles from 4 studies were conducted in the U.S., ^{7, 14, 16, 18, 19, 23} 4 studies were conducted in China,^{4, 5, 12, 31} and 5 articles from 3 studies each were conducted in Norway^{2, 10, 11, 21, 29} and Spain.^{6, 25-27, 30} Two studies were conducted in the U.K.^{8, 24} and 2 articles from 1 study each were conducted in Denmark^{1, 13} and the Netherlands.^{20, 22} One study each was conducted in Australia,²⁸ Ireland,³ Iran,⁹ Canada,¹⁵ and Brazil.¹⁷

Participant characteristics

<u>Age</u>

Twenty-six articles reported the mean or median age of participants, which ranged from 27 to 33 years in the majority of articles.^{1, 3-8, 10, 11, 13-16, 18-26, 28-31} The median age of participants in 1 RCT was 37 years.²⁷ Five articles reported approximately 16%, ¹² 12%, ¹⁰ 10%, ¹⁶ and 7%, ^{11, 17} of participants were ≥35 years and in 2 articles, approximately $4\%^{24}$ and $1\%^{2}$ of participants were ≥40 years. One article included approximately 25% of participants ≤19 years¹⁷ and 2 more included some participants ≤20 years.^{2, 23} One article reported including participants ranging from 20 to 40 years old.⁹ Four articles excluded participants ≤18 years^{5, 11, 14, 31} and an additional article excluded participants ≤16 years.²⁴

Health status

Pre-pregnancy BMI

All articles reported pre-pregnancy or early pregnancy (first trimester or early second trimester) BMI. Twentyfive articles enrolled participants predominantly without overweight or obesity, that is, with pre-pregnancy or early pregnancy BMI <25 kg/m²,^{1, 2, 6, 7, 9-11, 13-15, 17, 19-22, 25-30} <24 kg/m² (using Chinese Obesity Working Group ethnicity-specific cutoffs[†]),^{12, 14, 31} or <23 kg/m² (using World Health Organization ethnicity-specific cutoffs[‡]).^{4, 5}

^{*} The Human Development classification was based on the Human Development Index (HDI) ranking from the year the study intervention occurred or data were collected (UN Development Program. HDI 1990-2017 HDRO calculations based on data from UNDESA (2017a), UNESCO Institute for Statistics (2018), United Nations Statistics Division (2018b), World Bank (2018b), Barro and Lee (2016) and IMF (2018). Available from: <u>http://hdr.undp.org/en/data</u>). If the study did not report the year in which the intervention occurred or data were collected, the HDI classification for the year of publication was applied. HDI values are available from 1980, and then from 1990 to present. If a study was conducted prior to 1990, the HDI classification from 1990 was applied. When a country was not included in the HDI ranking, the current country classification from the World Bank was used instead (The World Bank. World Bank country and lending groups. Available from: <u>https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-</u> country-and-lending-groups).

⁺ Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults-study on optimal cut-off points of body mass index and waist circumference in Chinese adults. *BES*. 2002 Mar 1;15(1):83-96.

[‡] WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. *The Lancet*. 2004;363(9403):157-163. doi: 10.1016/S0140-6736(03)15268-3

Six articles enrolled participants exclusively⁸ or predominantly^{3, 16, 18, 23, 24} with pre-pregnancy or early pregnancy BMI \geq 30 kg/m^{2 8, 24} or \geq 25 kg/m². ^{3, 16, 18, 23}

History of HDP

Half of articles did not report on history of any type of hypertension.^{3, 5, 6, 9-11, 15, 19, 20, 25, 26, 28-31} Five articles enrolled 0.3-6% of participants with a history of hypertension^{7, 12, 13} or preeclampsia.^{24, 27} Eight articles exclusively enrolled nulliparous participants^{2, 16, 17, 21, 23} or excluded participants with a history of HDP¹ or preeclampsia.^{14, 18} One article excluded participants with a previous pregnancy complication resulting in delivery <32 gestational weeks (GW).⁴ Two articles excluded participants with hypertension before enrollment.^{8, 22}

Diabetes in current pregnancy

Five articles did not report diabetes prevalence during pregnancy^{1, 2, 5, 9, 28} Seven articles excluded those with pre-existing diabetes^{3, 7, 8, 11, 14, 18, 24} and 3 articles reported approximately 1-5% of participants had pre-existing diabetes.^{10, 23, 27} Fifteen articles reported approximately 1-17% of participants had gestational diabetes mellitus (GDM) in the current pregnancy and 4 articles reported GDM prevalence in the current pregnancy was $\geq 20\%$.^{4, 8, 12, 25} One RCT excluded participants with GDM in the current pregnancy.²⁶ Two articles reported baseline fasting blood glucose (FBG) levels: 1 RCT exclusively enrolled those with FBG <92 mg/dL³¹ at 8-12 GW and 1 article reported that mean FBG was approximately 77 mg/dL⁶ at 16 GW. One article reported 10.5% of participants had diabetes (pre-existing or GDM) in the current pregnancy.²² One article reported 0.2% of participants had a history of diabetes, but did not specify the type of diabetes.¹² One article excluded those with a history of diabetes (not specified)²⁰ or with high-risk pregnancies caused by unspecified diabetes.²⁹

Race and/or ethnicity

Seven articles did not report race and/or ethnicity,^{1, 5, 6, 9, 13, 29, 31} although 2 of the articles were conducted in China.^{5, 31}

White

Half of articles reported the majority of participants were White,^{2, 3, 7, 8, 10, 11, 15, 16, 19, 21, 23, 25-28} of which 4 articles reported >90% White participants.^{2, 3, 10, 21} Another 4 articles reported approximately 10-40% of participants were White.^{14, 17, 18, 24}

Asian & Pacific Islander

Seven articles reported approximately 1-44% of participants were Asian,^{7, 8, 16, 23, 24, 27, 28} with 1 trial additionally specifying approximately 8% of participants were of South Asian ethnicity.²⁸ One article reported approximately 20% of participants were Asian American or Pacific Islander.¹⁴ Two articles reported 83-98% participants were of Han ethnicity^{4, 12} and an additional article reported approximately 24% Native Hawaiian, 24% Filipino, and 22% Japanese participants.¹⁸

Hispanic

Seven articles reported approximately 6-30% Hispanic ethnicity participants.^{7, 14, 16, 23, 25-27} In one additional trial, all participants were Hispanic.³⁰

Black

Seven articles reported approximately 2-24% of participants were Black.^{7, 8, 16, 19, 23, 24, 27} Another article reported approximately 30% of participants were Black.¹⁴

Other

One article conducted in Brazil reported that most participants were not White,¹⁷ but provided no additional information about participant race and/or ethnicity. Two articles reported that participants were exclusively of Dutch ethnicity.^{20, 22} No articles reported American Indian or Alaska Native participants.

<u>SEP</u>

Education

Five articles did not report participant education level.^{13, 18, 24, 27, 28} In most articles that did report education data, the majority of participants had at least some higher education or were described as having "high" or "higher" education.^{2-6, 8, 10-12, 14-16, 19-23, 25, 26, 29} Six articles reported that the majority of participants had a high school education or less.^{1, 7, 9, 17, 30, 31}

Income, Occupation, or Other

Half of the articles did not report on income, occupation, or another measure of SEP. Of the 10 articles that reported income, 8 stated that a majority of participants had at least a "middle" income according to income level cutoffs specific to each country.^{4, 5, 7, 11, 12, 15, 17, 19} One article only reported that approximately 30% of participants had "high" income.²¹ Another article reported approximately 23% of participants earned an income below 200% of the U.S. Federal poverty level.²³

Of the 5 articles that reported occupation, 4 described participants as mostly employed^{11, 17, 25, 26} and 1 described participants as mostly unemployed.³⁰

Six articles reported a SEP measure other than education, income or occupation.^{8, 9, 13, 23, 27, 28} One article from Australia noted that approximately 17% of the participants were classified as most disadvantaged based on the Socio-economic Index for Areas—Index of Relative Socio-economic Disadvantage.²⁸ One U.S. article reported approximately 26% of participants had public insurance.²³ In an article from the U.K., 43% of participants were classified as "most deprived" on an index of multiple deprivation.⁸ One article stated the majority of participants were classified as "high" SES²⁷; 2 additional articles reported the majority of participants were classified as "moderate" SES or above, with approximately one-quarter of participants classified as "high" SES.^{9, 13}

Smoking

One-fourth of the articles did not describe smoking status of participants.^{4, 5, 8, 9, 17-19, 24} A range of approximately 1-11% of participants smoked during pregnancy in 15 articles^{2, 3, 6, 7, 10-12, 15, 21, 25-28, 30, 31} and an additional 3 articles conducted in the Netherlands^{20, 22} and Denmark¹³ reported 15-25% of participants smoked during pregnancy. Two articles stated approximately 8-25% of participants had ever smoked or smoked before pregnancy^{1, 20} and 3 articles conducted in Spain⁶ and the U.S.¹⁶ reported approximately 40% of participants had ever smoked or smoked before pregnancy. Two articles excluded participants who smoked,^{14, 29} although one of them only excluded participants who smoked if their pre-pregnancy BMI was <30 kg/m².¹⁴

Intervention/exposures and comparators

Dietary pattern (DP) was defined as the quantities, proportions, variety, or combination of different foods, drinks, and nutrients (when available) in diets, and the frequency with which they were habitually consumed.

Dietary patterns were assessed using experimental diets in 8 articles from 6 RCT and 1 NRCT,²⁴⁻³¹ index/score analysis in 13 articles,^{1, 3, 5-7, 10, 11, 14, 16, 18, 19, 22, 23} and factor/cluster analysis in 10 articles.^{2, 4, 8, 9, 12, 13, 15, 17, 20, 21} The dietary pattern components are detailed in **Table 5** and visualized in **Appendix 6**.

Table 5. Dietary Pattern Components*

Reference	Dietary pattern	Dietary pattern components
Experimental Diet		
Al Wattar, 2019 ²⁴	Mediterranean- style supplemented	Positive: Olive oil (as main fat and svg/d); Nuts (including peanuts) Vegetables; Fruit (including juice); Pulses; Fish or shellfish; White meat over red meat
	w/ mixed nuts and EVOO	Negative: Red or processed meat; Butter, margarine, or cream; SSB; Commercial sweets or pastries
Assaf-Balut, 2017 ²⁵ Assaf-Balut, 2019 ²⁶	Mediterranean- style supplemented	Positive: Olive oil (as main fat and svg/d); Vegetables; Fruit (including juice); Red wine; Pulses; Fish/seafood; Nuts; White over red meat; Traditional sauce of
Assal-Dalut, 2019-	w/ pistachios and EVOO	tomatoes, garlic, onion, or leeks sautéed in olive oil
		Negative: Red or processed meat; Butter, margarine, or cream; SSB; Commercial pastries
Crovetto, 2021 ²⁷	Mediterranean- style supplemented	Positive: EVOO; walnuts; vegetables; fresh fruit; dairy products; whole grains; sofrito; legumes; fish; fatty fish; white meat
	w/ walnuts and EVOO	Negative: Refined grains; red meat; processed meat; soda drinks; commercial bakery foods, sweets, and pastries; butter, margarine, or cream
Dodd, 2019 ²⁸	Healthy Eating Index	Positive: Vegetables; fruit; dairy
Khoury, 2005 ²⁹	Cholesterol- lowering	Higher in fish and fish products, including fatty fish; rapeseed-based margarine; oils, including olive oil and rapeseed oil; nuts, olives, and seeds; vegetables; and fruits
		Lower in fatty milk; meat and meat products; fatty minced meat; butter; and hard margarines
Melero, 2020 ³⁰	Mediterranean- style supplemented	Positive: vegetables; dishes with tomato sauce (tomato, garlic, onion, leek, olive oil); pulses; nuts; fish; white meat over red meat; olive oil; olive oil as principal cooking fat.
	w/ pistachios and EVOO	Negative: commercial pastries; red meat or sausages; animal fat; sugar-sweetened beverages
		Alcohol and fruit (including juice) components excluded
Zhao, 2022 ³¹	Mediterranean- style w/ recommended additional pistachios and EVOO	Positive: Olive oil (as main fat and svg/d); Vegetables; Fruit (including juice); Red wine; Pulses; Fish/seafood; Nuts; White over red meat; Traditional sauce of tomatoes, garlic, onion, or leeks sautéed in olive oil
		Negative: Red or processed meat; Butter, margarine, or cream; SSB; Commercial pastries
Index/Score Analysis		
Arvizu, 2020 ¹	American Heart	Positive: Fruits and vegetables; Whole grains; Fish and shellfish
	Association Primary	Negative: SSB; Sodium

^{*} Abbreviations: DASH: Dietary Approaches to Stop Hypertension; DHA: docosahexaenoic acid; DP: dietary pattern; EPA: eicosapentaenoic acid; EVOO: extra virgin olive oil; FFQ: food frequency questionnaire; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; SFA: saturated fatty acids; SSB: sugar-sweetened beverages; TFD: Three-day food diary

Reference	Dietary pattern	Dietary pattern components
	American Heart Association	Positive: Fruits and vegetables; Whole grains; Fish and shellfish; Nuts, seeds, and legumes
	Secondary	Negative: SSB; Sodium; Processed meat; Saturated fat
	DASH	Positive: Fruits and juices; Vegetables; Nuts/legumes; Whole grains; Low-fat dairy
		Negative: Red/processed meat; SSB; Sodium
Courtney, 2020 ³	Modified DASH	Positive: fruit and fruit juice; vegetables (excluding potatoes); whole grains; nuts/seeds/legumes; low-fat dairy
		Negative: red lean/red processed meat; SSB, sweet snacks, and desserts; sodium; salty snacks
Ding, 2021 ⁵	Chinese Dietary Guidelines Compliance Index for Pregnant Women	Positive: staple foods (cereals and their products, potatoes, and beans other than soybeans); green leafy and colored vegetables (red and yellow); milk and its products (milk, yogurt, formula milk powder); soybean and its products; nuts; lean meat (livestock and poultry meat); animal blood and liver; iodized table salt, iodine-rich seafood
		Negative: pickled food, fried food, cream cake, chocolate, other high-salt, high-oil, and high-sugar food
Flor-Alemany, 2021 ⁶	Mediterranean Diet Score	Positive: Vegetables; Potatoes; Legumes; Fruits; Whole Grains; Fish; Olive Oil
-		Negative: Red and Processed Meat; Poultry; Full-Fat Dairy
		Alcohol component excluded
Fulay, 2018 ⁷	DASH	Positive: fruit (including fruit juice); vegetables (not potatoes); whole grains; nuts/legumes; low-fat dairy
		Negative: sodium; SSB; red and/or processed meats
	DASH OMNI	Positive: fruit (including fruit juice); vegetables (not potatoes); whole grains; nuts/legumes; low-fat dairy; MUFA and PUFA
		Negative: sodium; SSB; red and/or processed meats
Hillesund, 2014 ¹⁰	New Nordic Diet	Positive: meal frequency; Nordic fruits (apples, pears, plums, and strawberries); root vegetables; cabbages; potatoes:total potatoes, rice, or pasta; whole grain bread over refined bread; oatmeal; foods from the wild countryside (wild fish, seafood, game, and wild berries); milk over juice; water:SSB
Hillesund, 2018 ¹¹	Norwegian Fit for Delivery	Positive: regular meals; drinking water when thirsty; vegetables w/ dinner; fruits and vegetables btw meals; reading nutrition labels before buying
		Negative: sweets and snacks without appreciation; large portion sizes of unhealthy foods; added sugar; salt; eating beyond satiety
Li, 2021 ¹⁴	Alternative Healthy Eating Index	Positive: Vegetables (not potatoes, French fries); Fruit; Legumes and Nuts; Whole Grains; Long-Chain Fats (EPA + DHA); PUFA
		Negative: Red and Processed Meat; SSB and Fruit Juice; Sodium
		Alcohol and trans-fat components excluded

Reference	Dietary pattern	Dietary pattern components
	Alternate	Positive: Vegetables; Fruit; Nuts; Fish; Lean Meat (poultry, lean beef)
	Mediterranean Diet	Negative: Red and Processed Meat; Sodium.
		Neutral: Grains and Starches; Dairy Foods
		Alcohol component excluded
	DASH	Positive: Vegetables (not potatoes and legumes); Nuts and Legumes; Fruit and Fruit Juice; Whole Grains; Low-Fat Dairy
		Negative: Red and Processed Meat; Sweetened Beverages; Sodium
Makarem, 2022 ¹⁶	Alternate Mediterranean Diet	Positive: Vegetables (not potatoes); Legumes; Fruit; Nuts; Whole Grains; Fish; MUFA:SFA
		Negative: Red and Processed Meat
		Moderate: Alcohol
Miller, 2022 ¹⁸	Healthy Eating Index-2015	Positive: Total vegetables; Greens and beans; Total fruit; Whole fruit; Fish; Whole grains; Total protein foods; Dairy; PUFA+MUFA:SFA
		Negative: Refined grains; Calories from solid fat, added sugars, and alcohol; Sodium
	Alternate Mediterranean Diet	Positive: Vegetables (excluding potatoes); Total fruit; Nuts; Legumes; Fish; Whole grains; MUFA:SFA
		Negative: Red and processed meat
		Moderate: Alcohol
	Modified DASH	Positive: Vegetables (excluding potatoes); Fruit; Nuts, seeds, and legumes; Fish; Whole grains; Low-fat dairy
		Negative: Red and processed meat; SSB and fruit juice; Sodium
Rifas-Shiman, 2009 ¹⁹	Alternative Healthy Eating Index for Pregnancy	Positive: vegetables, fruit, white meat (poultry or fish):red meat, fiber, PUFA:SFA, and folate, calcium, and iron from foods
		Negative: trans fat
Wiertsema, 2021 ²²	DASH	Positive: Vegetables (not potatoes and legumes); Nuts and Legumes; Fruit and Fruit Juice; Whole Grains; Low-Fat Dairy.
		Negative: Red and Processed Meat; Sweetened Beverages; Sodium
Yee, 2020 ²³	Healthy Eating Index-2010	Positive: Total Vegetables; Greens and Beans; Total Fruit (including juice); Whole Fruit; Whole Grains; Seafood and Plant Proteins; Total Protein Foods; Dairy; Fatty Acids
		Negative: Refined Grains; Empty Calories (i.e., energy from solid fats, alcohol, and added sugars); Sodium
Factor/Cluster Analysis		
Brantsæter, 2009 ²	Vegetable	Higher intake of vegetables, cooking oil, olive oil, fruits and berries, rice, and chicker
Factor/Cluster Analysis Brantsæter, 2009 ²	Vegetable	Higher intake of vegetables, cooking oil, olive oil, fruits an

Reference	Dietary pattern	Dietary pattern components	
	Processed food	Higher intake of processed meat products, white bread, French fries, salty snacks, and sugar-sweetened drinks and high negative loadings on oily fish, high-fiber breakfast cereals, and lean fish	
	Potato and fish	Higher intake of cooked potatoes, processed fish, lean fish, meat spread, fish spread and shellfish, and margarine	
	Cakes and sweets	Higher intake of cakes, waffles and pancakes, buns, ice cream, sweet biscuits, sweets, and chocolate	
de Seymour, 2022 ⁴	Fish, poultry and vegetables-based	Higher intake of fish; poultry; legumes and bean products; green leafy vegetables; root vegetables; other vegetables; seafood; fruits; eggs; organ meats; beverages; bread; dairy; soup; nuts	
	Pasta, sweetened beverages, oils and condiments-based	Higher intake of pasta; sweetened beverages; oils and condiments; fast food	
Flynn, 2016 ⁸	Fruit & Veg	Higher intake of bananas; citrus fruit; dried fruit; fresh fruit; green vegetables; pulses; root vegetables; salad vegetables; tropical fruit; yoghurt	
	African/Caribbean	Higher intake of red meat; cassava; white meat; rice including pilau, fried or jollof rice; plantain; fish	
	Processed	Higher intake of chocolate; crisps; green vegetables; potatoes; processed meat and meat products; root vegetables; squash and fizzy drinks; sugar free squash and fizzy drinks; chips	
	Snacks	Higher intake of biscuits and cookies; cakes and pastries; chocolate; full fat cheese; sweets	
Hajianfar, 2018 ⁹	Healthy	Higher intake of green vegetables, leafy vegetables, colored vegetables, fruits, low fat dairy, poultry, bulky vegetables, red meat, citrus, nuts, fish, olive, marinades, sweet fruit, egg, and unsaturated fat	
	Western	Higher intake of processed meats, fruits, fruits juice, citrus, nuts, fish, desserts and sweets, sugar, saturated fat, sweet fruit (melon, persimmon, date, fig, grapes, raisins, berries that have high glycemic index), potato, legumes, coffee, egg, pizza, high fat dairy, whole grain, and soft drinks	
	Traditional	Higher intake of refined grains, colored vegetables, olive, sugar, salt, spices, unsaturated fat, garlic, onion, and tea	
Hu, 2022 ¹²	Traditional-TFD	Higher intake of tubers; vegetables; fruits; red meat; coarse cereals; rice; nuts	
	Wheaten food- coarse cereals-TFD	Higher intake of wheat flour and products; coarse cereals; beans and bean products; lower intake of eggs; rice	
	Sweet food- seafood-TFD	Higher intake of pastries and candies; sweet beverages; shrimps, crabs, and mussels; fruits	
	Fried food-protein- rich-TFD	Higher intake of fried foods; beans and bean products; dairy products	

Reference	Dietary pattern	Dietary pattern components
	Fish-seafood-FFQ	Higher intake of shrimps, crabs and mussels; marine fish; freshwater fish; organ meat; seaweed; poultry
	Protein-rich-FFQ	Higher intake of dairy products; milk; eggs; beans and bean products; nuts; pastries and candies
	Vegetable-fruit-rice- FFQ	Higher intake of vegetables; fruits; rice; nuts
Ikem, 2019 ¹³	Western	Higher intake of pork; beef and veal; mixed meat; cold meat; egg; potatoes; French fries; dressing sauce; white bread; cold fish; butter; margarine
	Vegetable/Prudent	Higher intake of legumes; root vegetables; tomato; salad; corn; mushroom; onion; cabbage; other vegetables; other fruit
	Seafood	Higher intake of lean fish; oily fish; shellfish; cold fish; smoked fish; oil; beef and veal; lamb; egg; onion; tomato; Asian vegetables; other vegetables; fermented milk; yogurt
	Nordic	Higher intake of dark bread; Nordic fruit; hard cheese; banana; dried fruit; sweet spread; cold meat
	Rice/Pasta/Poultry	Higher intake of rice; pasta; poultry
	Sweets	Higher intake of chocolate; dairy dessert; candy; sweet spread; sugar cakes; white bread; margarine; snacks; French fries
	Alcohol	Higher intake of liquor; wine; beer; soybean; root vegetables; berries
Jarman, 2018 ¹⁵	Healthy	Higher intake of other vegetables, green vegetables, fruit (excluding juice), orange vegetables, oils, brown pasta or rice, fish or shellfish, tomatoes, white rice or pasta
Miele, 2021 ¹⁷	Obesogenic	Higher intake of ultra-processed and processed foods using NOVA classification (refined carbohydrate; fats; sweets)
	Intermediate	Lower intake of same food groups as "Obesogenic DP"
	Vegetarian	Higher intake of dairy; fruits; vegetables
	Protein	Higher intake of fatty meats; eggs; beans; very low intake of natural foods (using NOVA classification)
	Traditional	Higher intake of beans; meats; eggs; natural or minimally processed foods (using NOVA classification)
Timmermans, 2011 ²⁰	Mediterranean	Higher intake of vegetables, vegetable oils, pasta, rice, fish, and legumes, moderate intake of alcohol; Lower intake of sweets
	Traditional	Higher intake of meat and potatoes; Lower intake of fruit, nonalcoholic drinks, fish, and bread
Torjusen, 2014 ²¹	Health and sustainability	Higher intake of vegetables; fruit and berries; cooking oil; olive oil; whole grain products; lower intake of meat, including processed meat; white bread; salty snacks; Pommes frites; cakes and sweets

Timing of exposure assessment

Approximately one-third of articles assessed diet during the first trimester of pregnancy,^{4, 7, 9, 14, 16, 19, 20, 22, 23} with one of the articles assessing diet during the first and second trimester.¹⁴ Approximately half of articles assessed diet during the second trimester,^{1, 2, 5, 6, 8, 10-13, 15, 17, 21, 24, 27, 29} with 2 of the articles assessing diet during the second and third trimester.^{27, 29} The remaining articles assessed diet during all three trimesters.^{3, 18, 25, 26, 28, 30, 31}

Outcome

Outcomes varied across included articles, and outcome definitions were reported with varying levels of detail.

Preeclampsia and/or Eclampsia

Twenty-two articles reported preeclampsia and/or eclampsia as outcome(s).^{1, 2, 4, 8-11, 13, 14, 17, 19-22, 24-28, 30, 31 One article additionally reported risk of early preeclampsia,¹⁰ 2 additionally reported risk of severe preeclampsia,^{1, 13} and another article additionally reported risk of severe preeclampsia/HELLP/eclampsia combined.¹¹ One RCT reported HELLP (Hemolysis, Elevated Liver enzymes and Low Platelets) syndrome as an outcome.²⁷ Approximately one-third of the preeclampsia articles reported ≥4% preeclampsia incidence^{2, 11, 16, 17, 21, 24, 27}; of those, 3 articles reported ≥7% preeclampsia incidence.^{16, 17, 27}}

Gestational Hypertension

Fifteen articles reported gestational hypertension as an outcome.^{1, 5, 12-16, 20, 22, 25-28, 30, 31} One article additionally reported the risk of mid- and late- pregnancy gestational hypertension.¹³ Three of these articles reported \geq 14% gestational hypertension incidence.^{12, 13, 16}

Blood Pressure

Twelve articles reported blood pressure as an outcome.^{3, 6, 7, 9, 12, 20, 22, 25-27, 30, 31} Eleven reported systolic and diastolic blood pressure,^{3, 6, 7, 9, 12, 20, 22, 25, 26, 30, 31} while 3 reported mean blood pressure.^{3, 12, 27}

Hypertensive Disorders of Pregnancy

Five articles reported risk of any hypertensive disorder of pregnancy (gestational hypertension, preeclampsia, and/or eclampsia) as a composite outcome.^{7, 18, 22, 23, 29} Two of these articles reported ≥22% HDP incidence.^{18, 23}

<u>Proteinuria</u>

Three articles reported proteinuria as an outcome.^{25, 26, 30}

Synthesis of the evidence

Twenty-three dietary patterns from 18 articles (17 unique trials or cohorts) were statistically significantly associated with lower risk of HDP^{2, 5, 9-16, 18, 21, 27, 30} and/or lower blood pressure.^{3, 6, 12, 20, 22} Six dietary patterns from 5 articles were statistically significantly associated with higher risk of HDP^{2, 9, 13} or higher blood pressure.^{20, 27} Thirty-seven dietary patterns from 19 articles (15 unique trials or cohorts) showed no statistically significant association with any outcomes.^{1, 2, 4, 7-9, 12, 13, 17-19, 23-26, 28-31}

A summary of the findings is below. Please refer to **Table 7** for more details and **Appendix 6** for a visualization of the dietary pattern components.

Intervention studies

Seven articles from 5 trials reported no statistically significant effect of a dietary pattern on risk of HDP.^{24-26, 28-31}

The multicenter, U.K.-based ESTEEM RCT randomized participants with metabolic risk factors to a Mediterranean-style diet supplemented with mixed nuts and extra virgin olive oil (EVOO) (provided by investigators) or usual care.²⁴ The intervention did not have a statistically significant effect on risk of preeclampsia compared to usual care in all participants and in subgroup analyses by baseline BMI, baseline triglycerides, and chronic hypertension status.

The St. Carlos GDM Prevention Study RCT conducted in Spain also included a Mediterranean-style diet supplemented with nuts and EVOO (provided by investigators) intervention, which was compared to a Mediterranean-style diet with restricted fat.²⁵ The intervention had no effect on systolic or diastolic blood pressure at either 24-28 or 36-38 GW, gestational hypertension, preeclampsia, or proteinuria. Two secondary analyses of the St. Carlos GDM Prevention Study that restricted the analysis to normoglycemic participants only²⁶ or Hispanic participants only³⁰, respectively, also found that the intervention had no statistically significant effect on systolic or diastolic blood pressure at either 24-28 or 36-38 GW, gestational hypertension, preeclampsia, or proteinuria.

Zhao et al. also conducted an RCT that examined a Mediterranean-style diet intervention in China.³¹ The intervention group was also encouraged to consume EVOO and roasted pistachios every day (but was not supplied with EVOO or nuts), while the control group was recommended to restrict dietary fat. The intervention had no effect on blood pressure at 24-28 GW or 36-38 GW, gestational hypertension, or preeclampsia.

The OPTIMISE trial was conducted in Australia,²⁸ where participants were randomized to a lifestyle intervention including dietary advice consistent with the Australian dietary standards or standard care. Participants in the intervention group were specifically advised to increase their intake of fiber and to consume 2 servings of fruit, 5 servings of vegetables, and 3 servings of dairy per day. The intervention had no effect on risk of gestational hypertension or preeclampsia, although the differences in healthy eating index scores between groups at follow-up were very small (approximately 2 points at 28 GW and 36 GW), which may indicate a deviation from the intended intervention.

The CARRDIP trial conducted in Norway²⁹ implemented a cholesterol-lowering diet encouraging the intervention group to consume fatty fish, vegetable oils, nuts and nut butters, margarine based on olive- or rapeseed oil, and avocado to replace meat, butter, cream, and fatty dairy products; fresh fruits and vegetables; skimmed or low-fat dairy products in place of full fat products; legumes, vegetable main dishes, fatty fish, or poultry with the fat trimmed for a main meal most days. The control group participants were advised to consume a usual diet based on Norwegian foodstuffs and asked not to introduce more oils or low-fat meat and dairy products than usual. The intervention did not have a statistically significant effect on risk of hypertensive disorders of pregnancy.

Two trials reported statistically significant effects on risk of HDP or blood pressure.^{27, 30}

The secondary analysis of the St. Carlos GDM Prevention Study authored by Melero et al.³⁰ also compared outcomes to a non-randomized group, where the intervention was implemented in a "real world" setting, to the original trial control group. In this "real world" group, participants were recommended to consume EVOO and nuts, but were not provided with these foods. The "real world" intervention was associated with lower incidence of proteinuria but did not have an effect on systolic or diastolic blood pressure at 24-28 GW or 36-38 GW, gestational hypertension, or preeclampsia.

The Spanish IMPACT BCN trial²⁷ randomized intervention group participants to a Mediterranean-style diet supplemented with walnuts and EVOO and control group participants to usual care. Participants in the intervention group had higher mean blood pressure at follow-up compared to the control group. There were no statistically significant differences in risk of preeclampsia or incidence of gestational hypertension, eclampsia, or HELLP syndrome between groups.

Observational studies

Studies that suggest an association between dietary patterns and lower risk of HDP

Dietary patterns based on the following indices/scores were statistically significantly associated with lower risk of HDP and/or lower blood pressure: DASH and its variations,^{3, 14, 18, 22} Mediterranean Diet Score and its variations,^{6, 16} Healthy Eating Indices,^{14, 18} New Nordic Diet,¹⁰ Norwegian Fit for Delivery diet,¹¹ and the Chinese Dietary Guidelines Compliance Index for Pregnant Women (CDGCI-PW).⁵ Dietary patterns based on the following indices/scores may suggest a beneficial association with risk of HDP and/or blood pressure, despite a lack of statistically significant results: Healthy Eating Indices,^{19, 23} DASH,²² and alternate Mediterranean Diet.¹⁸ However, some of these results had small magnitudes of effect.^{19, 22} These patterns were generally characterized by higher intakes of vegetables, fruits, whole grains, legumes, and nuts and seeds, and lower intakes of red and processed meat, added sugars, and sodium.

The following dietary patterns derived via factor or cluster analysis were statistically significantly associated with lower risk of HDP and/or lower blood pressure: 'Western' DP,⁹ 'Healthy' DP,^{9, 15} 'Mediterranean' DP,²⁰ 'Health and sustainability' DP,²¹ 'Vegetable' DP,² 'Seafood' DP,¹³ 'Fish-seafood-FFQ' DP,¹² and a 'Sweet food-seafood-TFD' DP.¹² The following dietary patterns derived via factor or cluster analysis suggested a beneficial association with risk of HDP and/or blood pressure, despite a lack of statistically significant results: 'Cakes and sweets' DP,² 'Pasta, sweetened beverages, oils and condiments-based' DP,⁴ 'Fruit & Veg' DP,⁸ 'Wheaten food-coarse cereals-TFD' DP,¹² 'Vegetable-fruit-rice-FFQ' DP,¹² 'Sweets' DP.¹³ These patterns were generally characterized by higher intakes of vegetables, fruits, fish, and unsaturated fats. There were few other consistencies among the dietary patterns.

Results and methods of interest from these articles are included below and in Table 7.

Three articles were secondary analyses of an RCT.^{3, 6, 11} The secondary analysis of the Irish ROLO trial found that greater alignment with DASH was associated with lower third trimester (but not second trimester) diastolic blood pressure and mean arterial pressure; however, it was not associated with systolic blood pressure.³ The secondary analysis from the Spanish GESTAFIT trial⁶ reported that greater alignment with the MedDietScore at 16 GW was associated with lower systolic and diastolic blood pressure at 34 GW. In a secondary analysis of the Norwegian Fit for Delivery (NFFD) trial,¹¹ when additionally controlling for physical activity, greater alignment with the NFFD diet score in early pregnancy was statistically significantly associated with a reduced risk of severe preeclampsia, and was nearly significantly associated with a reduced risk of severe preeclampsia. When confined to the control group from the original trial, findings for risk of total preeclampsia were no longer statistically significant.

Three articles reported a stronger association between DP and risk of HDP among some groups at higher risk compared to participants at lower risk for HDP, although results were not consistent.^{10, 12, 13} One article from the Norwegian MoBa cohort¹⁰ reported that greater alignment with the New Nordic Diet was associated with reduced risk of total preeclampsia in all participants, participants who smoked during pregnancy, participants who didn't smoke during pregnancy, and participants with T1 or T2 DM (but not GDM). Stronger associations were generally observed among nulliparous participants and participants with pre-pregnancy BMI <30 kg/m², whereas weaker or statistically non-significant associations were observed among multiparous participants and participants with pre-pregnancy BMI <30 kg/m². An article from the China-based Born in Shenyang Cohort Study (BISCS) cohort¹² reported that greater alignment with the 'Sweet food-seafood TFD' DP and the 'Fish-seafood-FFQ' DP was associated with lower risk of gestational hypertension among those with pre-pregnancy BMI \geq 24 kg/m², but not among those with pre-pregnancy BMI <24 kg/m². A third article from the Danish National Birth Cohort¹³ noted that greater alignment with the 'Seafood' DP was associated with lower risk of gestational hypertension in all participants, participants with pre-pregnancy BMI <2.9 kg/m², and participants with both male and female (trend neared significance) fetuses, but not in participants with pre-pregnancy BMI <18.5 kg/m² or \geq 25 kg/m². Greater alignment with the 'Seafood' DP was associated with lower

risk of preeclampsia in all participants, but the association was not statistically significant in any subgroup analysis.

Two articles from the Generation R Study^{20, 22} found that lower alignment with a DP was associated with greater risk of HDP and/or blood pressure compared to high alignment.^{20, 22} Lower alignment with DASH²² or the 'Mediterranean' DP²⁰ was associated with higher diastolic blood pressure during middle and/or late pregnancy. Lower alignment with the 'Mediterranean' DP, but not DASH, was associated with higher systolic blood pressure in mid pregnancy and a higher risk of both gestational hypertension and preeclampsia.

Li et al. analyzed results from the NICHD Fetal Growth Studies–Singletons cohort¹⁴ and found that greater alignment with DASH, alternate Mediterranean Diet, and Alternative Healthy Eating Index were associated with reduced risk of gestational hypertension and/or preeclampsia, but the results varied by timing of dietary assessment (8-13 GW, 16-22 GW, and 24-29 GW) and by which quartiles were compared.

An article from an Iran-based cohort study⁹ reported that greater alignment with the 'Healthy' DP was marginally associated with reduced risk of preeclampsia but not risk of high diastolic or systolic blood pressure. Hajianfar et al. also reported that alignment with the highest quartile of the 'Western' DP was associated with reduced risk of high diastolic blood pressure when compared to the lowest quartile, but the overall association across quartiles was not statistically significant. In addition, greater alignment with the 'Western' DP was associated with reduced risk of high systolic blood pressure across quartiles. This contrasts with results from the same study, in which the 'Western' DP is associated with higher risk of preeclampsia, which is detailed **below**.

Seven articles reported statistically non-significant results that tended to be in the same direction as statistically significant results.^{8, 9, 12, 18, 19, 22, 23} Three articles reported statistically non-significant results that tended to be in the opposite direction as statistically significant results, meaning that dietary patterns commonly considered "detrimental" suggested a beneficial association with risk of HDP and/or blood pressure.^{2, 4, 13}

Studies that suggest an association between dietary patterns and higher risk of HDP

No dietary patterns based on indices/scores were statistically significantly associated with a higher risk of HDP and/or higher blood pressure. The following dietary patterns derived via factor or cluster analysis were statistically significantly associated with higher risk of HDP and/or higher blood pressure: 'Western' DP,^{9, 13} 'Processed' DP,² 'Traditional' DP,²⁰ and a 'Rice/Pasta/Poultry' DP.¹³ The following dietary patterns derived via factor or cluster analysis suggested a detrimental association with risk of HDP and/or blood pressure, despite a lack of statistically significant results: 'Fish, poultry, and vegetables-based' DP,⁴ 'Snacks' DP,⁸ 'Vegetable/Prudent' DP,¹³ 'Sweets' DP,¹³ 'Obesogenic' DP vs. 'Traditional' DP,¹⁷ and 'Intermediate' vs. 'Traditional' DP.¹⁷ These patterns were generally characterized by higher intakes of vegetables (primarily potatoes and French Fries), refined grains, and added sugars. There were few other consistencies among the dietary patterns.

Results and methods of interest from these articles are included below and in Table 7.

The Iran-based cohort study⁹ previously mentioned **above** also reported that greater alignment with the 'Western' DP was associated with higher risk of preeclampsia. This contrasts with results from the same study that the 'Western' DP is associated with lower risk of high diastolic and systolic blood pressure.

An article from the Danish National Birth Cohort¹³ also found that greater alignment with the 'Western' DP was associated with higher risk of preeclampsia and gestational hypertension, although results varied by prepregnancy BMI, fetal sex, and timing and severity of the diagnosis. Ikem et al. additionally reported that greater alignment with the 'Rice/Pasta/Poultry' DP was associated with higher risk of gestational hypertension, but not risk of preeclampsia or severe preeclampsia. Timmermans et al. noted in their analysis of the Generation R Study²⁰ that greater alignment with the 'Traditional' DP was associated with higher risk of both gestational hypertension and preeclampsia, as well as higher systolic blood pressure in both mid and later pregnancy, but results for diastolic blood pressure were inconsistent.

Three articles reported statistically non-significant results that tended to be in the same direction as statistically significant results.^{8, 13, 17} Two articles reported statistically non-significant results that tended to be in the opposite direction as statistically significant results, meaning that dietary patterns commonly considered "beneficial" suggested a detrimental association with risk of HDP and/or blood pressure.^{4, 13}

Studies that report unclear statistically non-significant findings

Half of observational study articles reported statistically non-significant results that indicated a null association^{2,} ^{3, 7, 13} or that were unclear^{1, 8, 9, 12-14, 17} due to due to analyses which compared one dietary pattern to a different dietary pattern,¹⁷ dietary patterns with combinations of foods that were difficult to interpret,^{8, 9, 12, 13} and/or reported results by quantiles did not show a suggested trend in direction.^{1, 8, 9, 12, 14}

Conclusion statement and grade

The 2025 Dietary Guidelines Advisory Committee did not draw a conclusion statement for the systematic review question, "What is the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy?" based on their review of the body of evidence. (see **Table 6**)

A conclusion statement cannot be drawn about the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy because of substantial concerns with consistency, directness, and precision in the body of evidence. (Grade: Grade Not Assignable)

Table 6. Conclusion statement, grade for dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy

Conclusion Statement	A conclusion statement cannot be drawn about the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy because of substantial concerns with consistency, directness, and precision in the body of evidence.
Grade	Grade Not Assignable
Body of Evidence	31 articles: 16 prospective cohort studies, 6 randomized controlled trials, 1 non-randomized controlled trial
Rationale	None of the intervention studies were designed to directly examine the relationship between dietary patterns during pregnancy and risk of hypertensive disorders during pregnancy, and the low incidence of the outcome limited precision of results. In addition, the available evidence was too inconsistent, both in the composition of the dietary patterns and the direction of the results, to draw a conclusion.

None of the intervention studies were designed to directly examine the relationship between dietary patterns during pregnancy and hypertensive disorders of pregnancy. Accordingly, the intervention studies were not sufficiently powered to detect differences between groups in the relatively rare outcome. In observational study articles, power analyses were not commonly reported and there was only one that noted having a large enough sample size to detect differences in an HDP outcome with adequate statistical power. Additionally, there were substantial inconsistencies in the direction of results from both the intervention study and observational study articles. Some dietary patterns with similar foods and beverages had a beneficial, detrimental, and/or non-significant association with the outcomes. Therefore, it was not possible to identify a combination of foods and beverages that were consistently associated with risk of HDP and/or blood pressure.

In addition, only 2 cohorts (MoBa and the Danish National Birth Cohort) noted large enough sample sizes to estimate risk of hypertensive disorders of pregnancy with significant statistical power.

More than half of the trials had high risk of bias overall due to concerns about deviations from intended interventions and selective reporting of the results. For deviations from intended interventions, issues arose when more participants in one group were diagnosed with GDM and the trial reported risk of HDP, which likely occurs after a GDM diagnosis. If participants diagnosed with GDM were treated with diet or insulin and GDM rates differed between the intervention and control group, this could have affected the HDP results later in pregnancy. There were also concerns about selective reporting of results when there was no pre-specified analysis plan, when there were more analyses listed in the protocol than what was reported in the article, or when there was not strong justification for secondary analyses in a subset of participants that were not specified in the original protocol. Risk of bias domain ratings for intervention study articles can be found in **Table 8** and **Table 9**.

All observational study articles had overall high risk of bias due to concerns about confounding, post-exposure interventions, missing data, and selective reporting of the results. Only a handful of observational studies controlled for all key confounders while also not controlling for any post-exposure variables (e.g., gestational weight gain). Issues arose for post-exposure interventions when GDM rates differed by alignment to a dietary pattern(s), but GDM was not controlled for in the analyses. Selection bias was suspected if participants were excluded from the study or analysis based on characteristics that were observed after the start of the exposure that were likely to have been influenced by both the exposure and the outcome. Some articles also did not report adequate information on missing data or did not perform analyses to suggest the results were not biased by missing data. Concerns about selection of the reported result were due to the lack of a pre-specified analysis plan or suspicion that results may have been selected based on magnitude or statistical significance. Risk of bias domain ratings for observational study articles can be found in **Table 10**.

Publication bias is always a concern and is a risk in this systematic review because the search did not include the gray literature. However, this body of evidence includes articles with both large and small sample sizes, as well as significant and null findings, so publication bias may be less likely.

Summary of conclusion statement and grade

The 2025 Dietary Guidelines Advisory Committee did not draw a conclusion statement^{*} for the systematic review question: "What is the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy?".

A conclusion statement cannot be drawn about the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy because of substantial concerns with consistency, directness, and precision in the body of evidence. (Grade: Grade Not Assignable)

^{*} A conclusion statement is carefully constructed, based on the evidence reviewed, to answer the systematic review question. A conclusion statement does not draw implications and should not be interpreted as dietary guidance.

Research recommendations

To more adequately assess the relationship between dietary patterns during pregnancy and risk of hypertensive disorders of pregnancy, additional research is needed that should:

- Include populations representative of all Americans, such as diversity in race and/or ethnicity, SEP, disability status, and gender identity. Of note, no included studies reported including American Indian or Alaska Native participants and a single study included Native Hawaiians.
- 2. Clearly describe characteristics related to health disparities (e.g., racial or ethnic group, religion, socioeconomic status, gender, age, or mental health; cognitive, sensory, or physical disability; sexual orientation or gender identity; geographic location; substance use; or other characteristics historically linked to discrimination or exclusion).
- 3. Conduct well-designed and sufficiently powered trials where the isolated effect of the dietary pattern is on risk of hypertensive disorders of pregnancy and where the dietary patterns are described in sufficient detail.
- 4. Administer dietary assessments as early as possible in and multiple times throughout pregnancy, use validated and reliable assessment methods, such as multiple 24 hour recalls and food frequency questionnaires validated for the population, and provide clear information on the period of time captured by the assessments.
- 5. Consider stratifying analyses by race and/or ethnicity or SEP (or other social determinants of health) or account for these and other key confounders in methods and/or analyses.
 - a. Consider treatment of GDM as a potential mediator in the relationship between dietary patterns consumed during pregnancy and HDP.
- 6. Include strong justification when controlling for variables that occur after the start of the exposure period (i.e., pregnancy) that could have been affected by the exposure, such as gestational weight gain.
- 7. In addition to other planned analyses, evaluate the dietary pattern against existing indices of dietary quality (e.g., Healthy Eating Index) to facilitate comparison across studies and carefully describe food groups in dietary patterns.
- 8. Collect information on prenatal supplementation, including nutrient types and amounts, and consider supplementation in study design and/or analytic plans.
- Since practical considerations limit most studies on pregnancy to observational designs, detailed collection and reporting of characteristics, behaviors and their timing and accounting for these factors in the analysis is critical.

Table 7. Evidence examining the relationship between dietary patterns consumed during pregnancy and hypertensive disorders of pregnancy^a

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
RCT			
Al Wattar, 2019 ²⁴	IG vs. CG	Preeclampsia	Key confounders accounted for:
RCT, Parallel-arm, United Kingdom, ESTEEM	24 h recall at baseline (~18 GW); ESTEEM Q at 20, 24, 28, 32, and 36 GW	Multivariable logistic regression aOR (95% CI)	Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking, Parity, History of HDP
Baseline N=1252; Analytic N= 1137 (Attrition: 9%)	DP Description:	<u>All participants:</u> 1.43 (0.84, 2.43), p=0.19	
 1137 (Attrition: 9%) Age (y): IG: 31.4±5.2; CG: 30.9±5.2 	 Control (CG): Received usual care and antenatal dietary advice as per U.K. national recommendations 	<u>Baseline BMI ≥30:</u> 1.65 (0.88, 3.11), p≥0.05	Other covariates: Personal history of GDM, Family history of HDP, Family history of DM, History of stillbirth,
 >40 (%): IG: 3.9; CG: 3.1 Race/Ethnicity (%): White: 	 Intervention (IG): High intake of nuts, EVOO, fruit, vegetables, non-refined grains, and legumes; 	<u>Baseline BMI <30:</u> 0.99 (0.37, 2.69), p≥0.05	Recruitment center
IG: 36.6; CG: 35.5; Asian: IG: 43.4; CG: 44.1; Black: IG: 16.4; CG: 17.2;	 moderate to high consumption of fish; low to moderate intake of poultry and dairy products; low consumption of red meat and processed meat; and avoidance of sugary drinks, fast food, and food rich in animal fat. Participants provided with 30 g/d of mixed nuts and 0.5 L/wk of EVOO. Adherence: ESTEEM Q score did not differ between groups at baseline but was significantly higher in IG vs CG after the intervention. 	p for interaction=0.40	Funding: Barts Charity; California Walnut Commission and Blue Diamond
Other: IG: 3.7; CG: 3.3 • Baseline BMI (%): 25-29.9: IG: 16.7; CG: 16.7; ≥30: IG: 69.1;		<u>Raised TG at baseline:</u> 1.13 (0.47, 2.71), p≥0.05	Growers donated walnuts and almonds, respectively
 CG: 69.6 History of PE (%): IG: 3.7; CG: 4.8 Current T1 or T2 DM (%): 0.0 		<u>Normal TG at baseline:</u> 1.21 (0.59, 2.46), p≥0.05 p for interaction=0.91	Summary: In metabolically at risk participants, a simple, individualized, Mediterranean-style diet supplemented with mixed nuts and EVOO did not have a significant effect on risk of new onset or superimposed preeclampsia compared to usual care.
	 Positive components: Olive oil (as main fat and svg/d); Nuts (including peanuts) Vegetables; Fruit (including juice); Pulses; Fish or shellfish; White meat over red meat 	<u>Chronic HTN:</u> 3.62 (0.65, 20.01), p≥0.05	
		<u>No chronic HTN:</u> 1.26 (0.71, 2.24), p≥0.05 p for interaction=0.25	
	 Negative components: Red or processed meat; Butter, margarine, or cream; SSB; Commercial sweets or pastries 		
	Outcome and assessment methods: PE assessed at: >20 GW		
	<u>New onset PE:</u> Systolic BP ≥140 mm Hg or diastolic BP ≥90 mmHg (≥2 readings, 4–6 hr apart) and new onset proteinuria (spot urine PCR >30 mg/mmol, 24-hr urine protein >300 mg, or ≥2+ on urine dipstick)		
	Superimposed PE: new onset proteinuria in participants w/ chronic HTN; Serum alanine		

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
	aminotransferase concentration >70 U/L or worsening HTN in participants w/ chronic HTN AND proteinuria at baseline.		
	Eclamptic seizures w/ no HTN or proteinuria also considered PE.		
Assaf-Balut, 2017 ²⁵ RCT, Parallel-arm, Spain, The St, Carlos GDM Prevention	IG vs. CG FFQ at: 8-12 GW, 24-28 GW, and 36-38 GW	Systolic BP Student t test or Mann-Whitney U test	Key confounders accounted for: Age, Physical activity, Race/ethnicity,
St. Carlos GDM Prevention Study Baseline N=1000; Analytic N=	DP Description:Both the intervention group (IG) and control group	Mean±SD, mmHg <u>24-28 GW:</u> CG: 105±11; IG: 105±11, n=0.180	SEP, Pre-pregnancy BMI, Smoking, Parity, History of HDP
 Baseline N=1000; Analytic N= 874 (Attrition: 13%) Age (y): CG: 32.7±5.3; IG: 33.2±5.0 Race/Ethnicity (%): White: CG: 67.8; IG: 69.0; Hispanic: CG: 28.4; IG: 28.6; Other: CG: 3.8; IG: 2.4 SEP: Education (%): Elementary: CG: 10.8; IG: 6.8; University: CG: 50.2; IG: 50.4 Employment (%): CG: 75.2; IG: 78.0 Pre-pregnancy BMI: CG: 23.3±4.0; IG: 22.9±3.6 Current GDM (%): CG: 23.4; IG: 17.1, p=0.012 Smoking (%): CG: 8.0; IG: 8.6 	(CG) given the same basic MedDiet recommendations: ≥2 svg/d vegetables, ≥3 svg/d fruit (avoiding juices), 3 svg/d skimmed dairy products, wholegrain cereals, 2-3 svg/wk legumes.	p=0.189 <u>36-38 GW:</u> CG: 112±13; IG: 112±11, p=0.193 Diastolic BP	 Funding: Fundación para Estudios Endocrinometabolicos, IdISSC Hospital Clínico San Carlos; the Instituto de Salud Carlos III of Spain; Fondo Europeo de Desarrollo Regiona Summary: A MedDiet supplemented with EVOO and pistachios had no significant effect on systolic or diastolic blood pressure at either 24-28 or 36-38 GW, gestational hypertension, preeclampsia, or proteinuria.
		Student t test or Mann-Whitney U test Mean±SD, mmHg <u>24-28 GW:</u> CG: 63±9; IG: 63±10, p=0.819	
		<u>36-38 GW:</u> CG: 72±9; IG: 73±9, p=0.316 Gestational Hypertension Chi-squared test, %	
	 CG recommended to restrict dietary fat, including EVOO and nuts. 	CG: 4.3; IG: 3.0, p=0.195	
	Adherence: MEDAS scores did not differ between groups at baseline. Scores significantly increased over time in both groups, but scores remaining significantly higher in the IG compared to the CG at both 24-28 GW and 36-38 GW. Physical activity scores did not differ at either follow-up point.	Preeclampsia Chi-squared test, %	
		CG: 2.5; IG: 1.6, p=0.247	
		Proteinuria Chi-squared test, %	
	 Positive components: Olive oil (as main fat and svg/d); Vegetables; Fruit (including juice); Red wine; Pulses; Fish/seafood; Nuts; White over red meat; Traditional sauce of tomatoes, garlic, onion, or leeks sautéed in olive oil 	CG: 1.4; IG: 0.5, p=0.298	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
	 Negative components: Red or processed meat; Butter, margarine, or cream; SSB; Commercial pastries 		
	Outcome and assessment methods: BP assessed at: 24-28 GW and 36-38 GW; Gestational HTN, PE, and Proteinuria assessed at: >20 GW		
	BP assessed while sitting after resting for 10 min.		
	<u>Gestational HTN:</u> ≥140 mmHg SBP/90 mmHg DBP		
	<u>PE:</u> ≥140 mmHg SBP/90 mmHg DBP w/ proteinuria ≥300 mg in 24h		
	<u>Proteinuria:</u> ≥300 mg in 24h w/ <140 mmHg SBP and <90 mm Hg DBP		
Assaf-Balut, 2019 ²⁶	IG vs. CG	Systolic BP	Key confounders accounted for:
 RCT, Parallel-arm, Spain, St. Carlos GDM Prevention Study Baseline N=823; Analytic N= 697 (Attrition: 15%) Age (y): CG: 32.54±5.29; IG: 32.92±4.92 Race/Ethnicity (%): White: CG: 67.1; IG: 67.8; Hispanic: 	 FFQ at: 8-12 GW, 24-28 GW, and 36-38 GW DP Description: Both the intervention group (IG) and control group (CG) given the same basic MedDiet recommendations: ≥2 svg/d vegetables, ≥3 svg/d fruit (avoiding juices), 3 svg/d skimmed dairy products, wholegrain cereals, 2-3 svg/wk legumes, moderate to high consumption of fish; low 	Student t test or Mann-Whitney U test Mean diff (95% CI), mmHg	Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking,
		<u>24-28 GW:</u> -1.5 (-3.2, 0.3), p=0.097	Parity, History of HDP, DM in current pregnancy
		<u>36-38 GW:</u> -0.9 (-3.5, 1.8), p=0.517	Funding: Fundación para Estudios Endocrinometabolicos, IdISSC Hospita Clínico San Carlos; the Instituto de Salud Carlos III of Spain
		Diastolic BP Student t test or Mann-Whitney U test Mean diff (95% CI), mmHg	
CG: 29.1; IG: 30.3; Other: CG: 3.9; IG: 1.9	consumption of red and processed meat, avoidance of refined grains, processed baked goods, pre-sliced	<u>24-28 GW</u> : -0.8 (-2.2, 0.6), p=0.279	Summary: Among normoglycemic participants, a MedDiet supplemented
 SEP: o Education (%): Elementary: 	bread, soft drinks and fresh juices, fast foods and precooked meals. They were also instructed to be	<u>36-38 GW:</u> -1.7 (-3.7, 0.1), p=0.068	with EVOO and pistachios had no
CG: 7.6; IG: 6.1; University: CG: 50.1; IG: 51.4 • Employment (%): CG: 75.3;	 physically active and walk >30 min/d. IG recommended to consume ≥40 mL/d of EVOO and a handful (25-30 g/d) of pistachios and were 	Gestational Hypertension Chi-squared test, %	significant effect on systolic or diastolic BP at either 24-28 or 36-38 GW, gestational hypertension, preeclampsia,
IG: 79.2 • Pre-pregnancy BMI: CG:	provided with 10 L EVOO and 2 kg roasted pistachios at 12-14 GW and 24-28 GW.	CG: 3.3; IG: 3.6, p=0.484	or proteinuria, although slightly higher diastolic blood pressure neared
22.9±3.8; IG: 22.4±3.3 • Current GDM (%): 0.0 • Smoking (%): CG: 7.4; IG: 8.3	 CG recommended to restrict dietary fat, including EVOO and nuts. 	Preeclampsia Chi-squared test, %	significance at 36-38 GW.
	Adherence: MEDAS scores did not differ at baseline. Scores significantly increased over time in both	CG: 1.2; IG: 1.9, p=0.311	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
	groups, but scores remained significantly higher in the IG compared to the CG at both 24-28 GW and 36-38	Proteinuria Chi-squared test, %	
	GW. Physical activity scores did not differ at either follow-up point.	CG: 1.2; IG: 0.6, p=0.313	
	 Positive components: Olive oil (as main fat and svg/d); Vegetables; Fruit (including juice); Red wine; Pulses; Fish/seafood; Nuts; White over red meat; Traditional sauce of tomatoes, garlic, onion, or leeks sautéed in olive oil 		
	 Negative components: Red or processed meat; Butter, margarine, or cream; SSB; Commercial pastries 		
	Outcome and assessment methods: BP assessed at: 24-28 GW and 36-38 GW; Gestational HTN, PE, and Proteinuria assessed at: >20 GW		
	BP assessed while sitting after resting for 10 min.		
	<u>Gestational HTN:</u> ≥140 mmHg SBP/90 mmHg DBP		
	<u>PE:</u> ≥140 mmHg SBP/90 mmHg DBP w/ proteinuria ≥300 mg in 24h		
	<u>Proteinuria:</u> ≥300 mg in 24h w/ <140 mmHg SBP and <90 mm Hg DBP		
Crovetto, 2021 ²⁷ RCT, Parallel-arm, Spain,	IG vs. CG FFQ and 7d diet journal at: 19-23.6 GW and 34-36 GW	Preeclampsia according to ITT analysis Logistic regression Risk difference (95% CI); OR (95% CI)	Key confounders accounted for: Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking,
IMPACT BCN Baseline N=814; Analytic N= 793	DP Description:	-3.6 (-7.3, 0.0); 0.58 (0.34, 1.01), p=0.05	Parity, History of HDP
(Attrition: 3%)	 Intervention group (IG): Participants received dietary training and personalized advice to increase 		Funding: "La Caixa" Foundation;
• Age (y): Median (IQR): IG: 37.2 (34.5-40.4); CG: 37 (33.2-	adherence to the Mediterranean diet, including increasing intake of whole grain cereals (≥5 svg/d); vegetables and dairy products (≥3 svg/d); fresh fruit (≥2 svg/d) including natural fruit juices; and legumes, nuts, fish, and white meat (≥3 svg/wk), as well as olive oil use for cooking and dressings. They also	Preeclampsia according to PP analysis Logistic regression	Cerebra Foundation for the Brain Injured Child; The Agency for
40.5)		OR (95% CI)	Management of University and Research Grants; Centro de
• Race/Ethnicity (%): White: IG: 80.1; CG: 78.8; Latin American: IG: 13.8; CG: 15.2;		IG: Participants with high dietary adherence (3pt increase in diet score)	Investigaciones Biomédicas en Red sobre Enfermedades Raras
Maghreb: IG: 2.0; CG: 2.2; Asian: IG: 2.0; CG: 2.0; Black: IG: 2.0; CG: 1.7	received olive oil (2 L/mo) and walnuts (450 g/mo).	0.55 (0.29, 1.07), p=0.08	Summary: A Mediterranean-style DP

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 SEP: SES status (%): High: IG: 59.7; CG: 57.1; Low: IG: 5.1; CG: 7.2 Pre-pregnancy BMI: IG: 24±4.8; CG: 23.9±4.8 History of PE (%): IG: 6.6; CG: 5.2 Current DM (%): IG: 5.4; CG: 4.0 Smoking (%): IG: 6.9; CG: 9.5 	 Control group (CG): Participants received usual care per institutional protocols. Adherence: Mediterranean diet scores were similar between groups at baseline, but significantly increased in the IG at follow-up compared to the CG. Positive components: EVOO; walnuts; vegetables; fresh fruit; dairy products; whole grains; sofrito; legumes; fish; fatty fish; white meat Negative components: Refined grains; red meat; processed meat; soda drinks; commercial bakery foods, sweets, and pastries; butter, margarine, or cream Outcome and assessment methods: BP assessed at: 19-23.6 GW and 34-36 GW; PE assessed at: ≥20 GW; Gestational HTN, Eclampsia, HELLP assessed at: NR 	Mean Blood Pressure ANCOVA Mean diff (95% Cl) 1.3 (0.3, 2.4), p<0.05	Summary supplemented with walnuts and EVOO did not have a significant effect on risk of preeclampsia or incidence of gestational hypertension, eclampsia, or HELLP syndrome. The intervention increased mean blood pressure from baseline to follow-up in the IG compared to the CG.
	BP measured by dietitian. <u>PE:</u> SBP ≥140mmHg or DBP ≥90mmHg ≥4h apart and proteinuria ≥300 mg/24 h <u>Gestational HTN, Eclampsia, HELLP:</u> Recorded within 28d after delivery		
Dodd, 2019 ²⁸ RCT, Parallel-arm, Australia, OPTIMISE Baseline N=641; Analytic N= 629 (Attrition: 1%) • Age (y): 31.53±4.76 • Race/Ethnicity (%): White: 67.46; Asian: 15.01; Indian, Pakistani, Sri Lankan: 8.06; Other: 9.47 • SEP: • SEIFA IRSD (%): Quintile 1 (most disadvantaged): 16.75; Quintile 5: 17.85	 LI vs. SC FFQ at: Trial entry (10-20 GW), 28 GW, and 36 GW DP Description: Lifestyle Intervention (LI): Received 3 in-person visits and 3 phone calls with dietitian or research assistant at trial entry, and 20, 24, 28, 32, and 36 GW. Dietary advice was consistent with current Australian dietary standards, maintaining a balance of carbohydrates, fat, and protein, and encouraging reduced intake of energy dense and non-core foods high in refined carbohydrates and saturated fats. Participants were advised to increase their intake of fiber, and to consume 2 svg/d fruit, 5 svg/d vegetables and 3 svg/d dairy. 	Gestational Hypertension Log Binomial Regression OR (95% CI) 1.87 (0.52, 6.70), p=0.338 Preeclampsia Log Binomial Regression OR (95% CI) 0.70 (0.25, 1.96), p=0.502	 Key confounders accounted for: Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking, Parity, History of HDP, DM in current pregnancy Funding: The University of Adelaide; Lloyd Cox Strategic Research Excellence Award; NHMRC Practitioner Fellowship Summary: A lifestyle intervention with dietary advice consistent with Australian dietary standards had no significant effect on risk of gestational

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 Baseline BMI: Median (IQR): 22.20 (20.87, 23.60) Smoking (%): 4.42 	 Standard Care (SC): Received antenatal care according to hospital guidelines, which did not include information relating to dietary intake, physical activity or weight gain during pregnancy. Adherence: HEI scores from FFQ did not differ at baseline but were higher in LI at 28 GW and 36 GW. Physical activity scores did not differ at either follow-up. Outcome and assessment methods: PE and Gestational HTN assessed at: >20 GW Gestational HTN: Systolic BP ≥140 mmHg and/or diastolic BP ≥90 mmHg PE: Gestational HTN and (≥1): proteinuria (300 mg/24h or spot urine protein/creatinine ratio ≥30 mg/mmol); renal insufficiency (serum/plasma creatinine ≥0.09 mmol/L or oliguria); liver disease; neurological problems; hematological disturbances; fetal growth restriction 		hypertension or preeclampsia compared to standard care.
Khoury, 2005 ²⁹ RCT, Parallel-arm, Norway, CARRDIP Baseline N=290; Analytic N=269 (Attrition: 7%) • Age (y): CG: 29.8±3.4; IG: 29.6±3.7 • SEP: • Education >12y (%): CG: 84.6; IG: 79.4 • Baseline BMI: CG: 24.3±2.7; IG: 24.3±2.9 • High-risk pregnancies caused by DM (%): 0.0 • Smoking (%): 0.0	 IG vs. CG Weighed food record at: 4d during 19-24 GW, 6d during 24-30 GW and 30-36 GW Intervention (IG): Diet aimed to aimed to limit dietary cholesterol to 150 mg/d and replace SFA by MUFA and PUFA. Participants encouraged to consume fatty fish, vegetable oils, especially olive oil and rapeseed oil, nuts, nut butters, margarine based on olive- or rapeseed oil, and avocado to replace meat, butter, cream, and fatty dairy products; fresh fruits and vegetables (≥6⁄d); skimmed or low-fat dairy products in place of full fat products; meat for a main meal twice a week and use legumes, vegetable main dishes, fatty fish, or poultry with the fat trimmed off on the other days; coffee was limited to 2 cups of filtered coffee a day. Cooking lessons scheduled to implement special foods (e.g., legumes, olive oil). Control (CG): Usual diet based on Norwegian foodstuffs. Participants were asked to not to 	HDP Fisher exact test OR (95% CI) 1.0 (0.5, 2.5), p=1.0	 Key confounders accounted for: Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking, Parity, History of HDP Funding: The Norwegian Council on Cardiovascular Disease Summary: A cholesterol-lowering diet did not have a significant effect on risk of hypertensive disorders of pregnancy.

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
	introduce more oils or low-fat meat and dairy products than usual.		
	Adherence: During the study period, the IG consumed significantly more fish and fish products, including fatty fish; rapeseed-based margarine; oils, including olive oil and rapeseed oil; nuts, olives, and seeds; vegetables; and fruits during the study period, as well as significantly less fatty milk; meat and meat products; fatty minced meat; butter; and hard margarines compared to the CG		
	Outcome and assessment methods: HDP assessed at: >20 GW Obtained from hospital records.		
	<u>HDP:</u> Gestational HTN (BP >140/90 mmHg at 2 occasions ≥6h apart) w/or w/o proteinuria (1+ on a dipstick assay)		
Melero, 2020 ³⁰	IG vs. CG	Systolic BP	Key confounders accounted for:
RCT, Parallel-arm, Spain, St. Carlos GDM prevention study Baseline N=600; Analytic N= 260	FFQ at: 8-12 GW, 24-28 GW, and 36-38 GW DP Description:	Student t test or Mann-Whitney U test if normal distribution; Shapiro-Wilk test if not-normal distribution	Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking, Parity, History of HDP
(Attrition: 9%)	 Both the intervention group (IG) and control group (CG) given the same basic MedDiet recommendations: ≥2 svg/d vegetables, ≥3 svg/d 	Mean±SD, mmHg <u>24-28 GW:</u> CG: 104±11; IG: 106±11, p=0.131	Funding: Fundación para Estudios Endocrinometabolicos, IdISSC Hospital Clínico San Carlos; the Instituto de
 Age (y): CG: 31.3±5.6; IG: 31.7±5.4 Race/Ethnicity (%): Hispanic: 	fruit (avoiding juices), 3 svg/d skimmed dairy products, wholegrain cereals, 2-3 svg legumes/wk, moderate to high consumption of fish; low	<u>36-38 GW:</u> CG: 115±16; IG: 113±13, p=0.631	Salud Carlos III of Spain
100	consumption of red and processed meat, avoidance	· 	Summary: Among Hispanic
 SEP: Education (%): Elementary: CG: 19.7; IG: 12.6; Secondary: CG: 47.2; IG: 	of refined grains, processed baked goods, pre-sliced bread, soft drinks and fresh juices, fast foods and precooked meals. They were also instructed to be physically active and walk >30 min/d.	Diastolic BP Student t test or Mann-Whitney U test if normal distribution; Shapiro-Wilk test if not-normal distribution	participants, a MedDiet supplemented with EVOO and pistachios (IG) did not have an effect on systolic blood pressure or diastolic blood pressure at
46.2; University: CG: 31.7; IG: 40.6; Unknown: CG: 1.4;	 IG recommended to consume ≥40 mL/d of EVOO 	Mean±SD, mmHg	24-28 GW or 36-38 GW, gestational
IG: 0.7	and a handful (25-30 g/d) of pistachios and were provided with 10 L EVOO and 2 kg roasted	<u>24-28 GW:</u> CG: 63±9; IG: 63±9, p=0.864	hypertension, preeclampsia, or proteinuria compared to lower
 Unemployed (%): CG: 69.0; IG: 67.8 	pistachios at 12-14 GW and 24-28 GW.	<u>36-38 GW:</u> CG: 72±9; IG: 72±9, p=0.192	alignment with a MedDiet (CG).
 Pre-pregnancy BMI: CG: 24.4±4.0; IG: 24.1±3.4 Current GDM (%): CG: 25.8; IG: 14.8, p=0.021 	 CG recommended to restrict dietary fat, including EVOO and nuts. 	Gestational Hypertension Chi-squared test, %	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 Smoking (%): CG: 0.7; IG: 0.7 	Adherence: MEDAS scores did not differ between the groups at baseline. Scores significantly increased over	CG: 6.1; IG: 5.5, p=0.525	
	time in the IG, while no changes in the CG were	Preeclampsia Chi-squared test, %	
	IG compared to the CG at both 24-28 GW and 36-38 GW. Physical activity scores did not differ at either follow-up point.	CG: 4.5; IG: 3.9, p=0.521	
	Positive components: vegetables; dishes with tomato	Proteinuria Chi-squared test, %	
	sauce (tomato, garlic, onion, leek, olive oil); pulses; nuts; fish; white meat over red meat; olive oil; olive oil as principal cooking fat.	CG: 2.3; IG: 0.0, p=0.129	
	 Negative components: commercial pastries; red meat or sausages; animal fat; sugar-sweetened beverages 		
	 Alcohol and fruit (including juice) component excluded 		
	Outcome and assessment methods: BP assessed at: 24-28 GW and 36-38 GW; Gestational HTN, PE, and Proteinuria assessed at: >20 GW BP assessed while sitting after resting for 10 min. <u>Gestational HTN:</u> >140 mmHg SBP or >90 mmHg DBP <u>PE:</u> Gestational HTN w/ proteinuria (>300 mg in 24h) <u>Proteinuria:</u> >300 mg in 24h w/o gestational HTN		
Zhao, 2022 ³¹ RCT, Parallel-arm, China,	CG vs IG FFQ at: 8-12 GW, 24-28 GW, 36-38 GW	Systolic BP Student t test Mean±SD, mmHg	Key confounders accounted for: Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking,
People's Hospital of Zhengzhou University Baseline N=560; Analytic N= 500 (Attrition: 11%) • Age (y): CG: 28±5.2; IG: 29.4±5.6 • SEP: • Employed (%): CG: 75.2; IG: 46.4	 DP Description: Both groups: MedDiet (vegetables, fruits, skimmed dairy foods, whole grain cereals, legumes, fish; avoid refined grains, baked goods, soft drinks, juices, junk food, precooked meat, pre-sliced slices of bread) and walking 30 min/d recommended Intervention group (IG): Recommended to consume ≥40 ml/d EVOO and 25-30 g/d roasted pistachios recommended; Weekly visits with a dietitian 	<u>24-28 GW:</u> IG: 110±13; CG: 100±14, p=1.00	Parity, History of HDP,
		<u>36-38 GW:</u> IG: 114±18; CG: 115±16, p=0.512	Summary: A MedDiet with recommended additional EVOO and
		Diastolic BP Student t test Mean±SD, mmHg	pistachios had no effect on blood pressure at 24-28 GW or 36-38 GW, gestational hypertension, or
		<u>24-28 GW:</u> IG: 61±9; CG: 60±8, p=0.189	preeclampsia.

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 Education (%) High school: CG: 0.1; IG: 10.8; Unknown: CG: 6.4; IG: 1.2 Pre-pregnancy BMI: CG: 23.3±3.9; IG: 22.8±3.4 FBG <92 mg/dl (%): 100 Current GDM (%): CG: 20.4; IG: 13.6, p=0.042 Smoking (%): Current: CG: 2.4; IG: 2 	 Control group (CG): Recommended to restrict dietary fat, including extra virgin coconut oil and dry fruits, by the midwives. Adherence: MEDAS scores did not differ at baseline. Scores significantly increased over time in both groups, but the IG had significantly higher scores than the CG at both 24-28 GW and 36-38 GW. Physical activity scores did not differ at either follow-up point. Positive components: Olive oil (as main fat and svg/d); Vegetables; Fruit (including juice); Red wine; Pulses; Fish/seafood; Nuts; White over red meat; Traditional sauce of tomatoes, garlic, onion, or leeks sautéed in olive oil Negative components: Red or processed meat; Butter, margarine, or cream; SSB; Commercial pastries Outcome and assessment methods: BP assessed at 24-28 GW and 36-38 GW; Gestational HTN, PE, and Proteinuria assessed at: >20 GW Gestational HTN and PE recorded as pre-delivery outcomes. BP monitored after participants sat for ≥10 min. Gestational HTN: Systolic BP ≥140 mm Hg and diastolic BP ≥90 mm Hg 	<u>36-38 GW:</u> IG: 74±7; CG: 74±6, p=1.00 Gestational Hypertension Chi-squared test, % IG: 2.4; CG: 3.6, p=0.431 Preeclampsia Chi-squared test, % IG: 1.6; CG: 2.0, p=0.736	
NRCT			
Melero, 2020 ³⁰	RW vs CG FFQ at: 8-12 GW, 24-28 GW, and 36-38 GW	Systolic BP Student t test or Mann-Whitney U test if	Key confounders accounted for: Age, Physical activity, Race/ethnicity,
NRCT, Spain, St. Carlos GDM prevention study		normal distribution; Shapiro-Wilk test if	SEP, Pre-pregnancy BMI, Smoking,

not-normal distribution

24-28 GW: CG: 104±11; RW: 105±11,

Mean±SD, mmHg

p=0.164

prevention study

(Attrition: 9%)

31.4±5.7

Baseline N=600; Analytic N= 416

• Age (y): CG: 31.3±5.6; RW:

DP Description:

• Both the intervention group (IG) and control group

recommendations: ≥2 svg/d vegetables, ≥3 svg/d

products, wholegrain cereals, 2-3 svg legumes/wk,

fruit (avoiding juices), 3 svg/d skimmed dairy

(CG) given the same basic MedDiet

Parity, History of HDP

Salud Carlos III of Spain

Funding: Fundación para Estudios

Clínico San Carlos; the Instituto de

Endocrinometabolicos, IdISSC Hospital

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 Race/Ethnicity (%): Hispanic: 100 SEP: Education (%): Elementary: CG: 19.7; RW: 11.2; Secondary: CG: 47.2; RW: 	moderate to high consumption of fish; low consumption of red and processed meat, avoidance of refined grains, processed baked goods, pre-sliced bread, soft drinks and fresh juices, fast foods and precooked meals. They were also instructed to be physically active and walk >30 min/d.	<u>36-38 GW:</u> CG: 115±16; RW: 115±14, p=0.256	Summary: Among Hispanic participants, a MedDiet in a real-world
		Diastolic BP Student t test or Mann-Whitney U test if normal distribution; Shapiro-Wilk test if	(RW) setting was associated with lower incidence of proteinuria and the association neared significance for
50.8; University: CG: 31.7; RW: 35.5; Unknown: CG: 1.4; RW: 2.5	 IG recommended to consume ≥40 mL/d of EVOO and a handful (25-30 g/d) of pistachios and were 	not-normal distribution Mean±SD, mmHg	lower incidence of gestational hypertension. RW did not have an effect
 Unemployed (%): CG: 69.0; RW: 73.3 	provided with 10 L EVOO and 2 kg roasted pistachios at 12-14 GW and 24-28 GW.	24-28 GW: CG: 63±9; RW: 63±9, p=0.413	on systolic or diastolic blood pressure at 24-28 GW or 36-38 GW or
 Pre-pregnancy BMI: CG: 24.4±4.0; RW: 23.4±3.6, 	 CG recommended to restrict dietary fat, including EVOO and nuts. 	<u>36-38 GW:</u> CG: 72±9; RW: 71±10, p=0.589	preeclampsia, compared to CG.
p=0.033 • Current GDM (%): CG: 25.8; RW: 13.4, p=0.011	groups at baseline. Scores significantly increased over	Gestational Hypertension Chi-squared test, %	
 Smoking (%): CG: 0.7; RW: 1.6 		CG: 6.1; RW: 2.1, p=0.05	
		Preeclampsia Chi-squared test, %	
	 Positive components: vegetables; dishes with tomato sauce (tomato, garlic, onion, leek, olive oil); pulses; nuts; fish; white meat over red meat; olive oil; olive oil as principal cooking fat. 	CG: 4.5; RW: 1.4, p=0.245	
		Proteinuria Chi-squared test, %	
	 Negative components: commercial pastries; red meat or sausages; animal fat; sugar-sweetened beverages 	CG: 2.3; RW: 0.0, p=0.037	
	 Alcohol and fruit (including juice) component excluded 		
	Outcome and assessment methods: BP assessed at: 24-28 GW and 36-38 GW; Gestational HTN, PE, and Proteinuria assessed at: >20 GW BP assessed while sitting after resting for 10 min. <u>Gestational HTN:</u> >140 mmHg SBP or >90 mmHg DBP PE: Gestational HTN w/ proteinuria (>300 mg in 24h)		
	Proteinuria: >300 mg in 24h w/o gestational HTN		

Cohort Studies

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
Index/Score			
Arvizu, 2020 ¹	AHA Primary, AHA Secondary, & DASH (quintiles of	Total Preeclampsia	Key confounders accounted for:
PCS, Denmark, DNBC Analytic N =66,651	alignment) FFQ at: ~25 GW	Log-Poisson regression RR (95% CI)	Age, SEP, Pre-pregnancy BMI, Smoking, Parity, History of HDP, DM in current pregnancy
Analytic N =66,651 • Age at birth (y): • AHA primary: Quintile 1: 29±4; Quintile 5: 31 ± 4 , p<0.05 • AHA secondary: Quintile 1: 29±4; Quintile 5: 31 ± 4 , p<0.05 • DASH: Quintile 1: 30 ± 4 ; Quintile 5: 31 ± 4 , p<0.05 • \geq High school graduate (%): • \geq High school graduate (%): • \geq AHA primary: Quintile 1: 32 ; Quintile 5: 48 , p<0.05 • \geq AHA secondary: Quintile 1: 30; Quintile 5: 50 , p<0.05 • $DASH$: Quintile 1: 33 ; Quintile 5: 47 , p<0.05 • $DASH$: Quintile 1: 33 ; Quintile 5: 47 , p<0.05 • Pre -pregnancy BMI: • AHA primary: Quintile 1: 24.3 ± 4.69 ; Quintile 5: 22.8 ± 3.66 , p<0.05 • AHA secondary: Quintile 1: 24.2 ± 4.65 ; Quintile 5: 22.9 ± 3.65 , p<0.05 • $DASH$: Quintile 1: 24.4 ± 4.66 ; Quintile 5: 22.7 ± 43.61 , p<0.05 • History of HDP (%): 0.0 • Never smoked (%): • AHA primary: Quintile 1: 67 ; Quintile 5: 82 , p<0.05 • AHA secondary: Quintile 1: 67 ; Quintile 5: 82 , p<0.05	 DP Descriptions: AHA Primary Positive components: Fruits and vegetables; Whole grains; Fish and shellfish Negative components: SSB; Sodium: AHA Secondary Positive components: Fruits and vegetables; Whole grains; Fish and shellfish; Nuts, seeds, and legumes Negative components: SSB; Sodium; Processed meat; Saturated fat: DASH Positive components: Fruits and juices; Vegetables; Mhole grains; Low-fat dairy Negative components: Red/processed meat; SSB; Sodium: Positive components: Red/processed meat; SSB; Sodium: Dagnose obtained via linkage to the Danish National Patient Registry. Outcomes defined following International Classification of Diseases-10 codes Total PE includes severe PE. 	AHA Primary (Quintiles) 2 vs. 1 (Ref): 1.08 (0.92, 1.27), p≥0.05 3 vs. 1 (Ref): 1.01 (0.86, 1.18), p≥0.05 4 vs. 1 (Ref): 0.92 (0.77, 1.10), p≥0.05 5 vs. 1 (Ref): 0.90 (0.75, 1.08), p≥0.05 p for trend=0.13 AHA Secondary (Quintiles) 2 vs. 1 (Ref): 0.95 (0.81, 1.12), p≥0.05 3 vs. 1 (Ref): 0.90 (0.75, 1.08), p≥0.05 4 vs. 1 (Ref): 1.02 (0.86, 1.22), p≥0.05 5 vs. 1 (Ref): 0.95 (0.79, 1.14), p≥0.05 5 vs. 1 (Ref): 0.95 (0.79, 1.14), p≥0.05 g for trend=0.78 DASH (Quintiles) 2 vs. 1 (Ref): 1.02 (0.87, 1.20), p≥0.05 3 vs. 1 (Ref): 0.93 (0.77, 1.12), p≥0.05 5 vs. 1 (Ref): 0.96 (0.80, 1.15), p≥0.05 p for trend=0.57 Subgroup analyses where participants with gestational HTN or pre-pregnancy chronic HTN were excluded, respectively, did not substantively alter the results Severe Preeclampsia Log-Poisson regression RR (95% CI)	
65; Quintile 5: 84, p<0.05 • DASH: Quintile 1: 68; Quintile 5: 81, p<0.05		<u>AHA Primary (Quintiles)</u> 2 vs. 1 (Ref): 0.81 (0.56, 1.17), p≥0.05 3 vs. 1 (Ref): 0.99 (0.70, 1.40) , p≥0.05 4 vs. 1 (Ref): 0.92 (0.64, 1.33), p≥0.05 5 vs. 1 (Ref): 1.07 (0.74, 1.55), p≥0.05	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		p for trend=0.69	
		DASH (Quintiles) 2 vs. 1 (Ref): 1.05 (0.73, 1.51), p≥0.05 3 vs. 1 (Ref): 0.89 (0.64, 1.25), p≥0.05 4 vs. 1 (Ref): 0.96 (0.64, 1.44), p≥0.05 5 vs. 1 (Ref): 1.12 (0.77, 1.63), p≥0.05	
		Gestational Hypertension Log-Poisson regression RR (95% CI)	
		AHA Primary (Quintiles) 2 vs. 1 (Ref): 0.92 (0.69, 1.23), p≥0.05 3 vs. 1 (Ref): 1.08 (0.82, 1.41), p≥0.05 4 vs. 1 (Ref): 0.95 (0.71, 1.28), p≥0.05 5 vs. 1 (Ref): 1.20 (0.90, 1.60), p≥0.05 p for trend=0.26	
		DASH (Quintiles) 2 vs. 1 (Ref): 0.85 (0.63, 1.15), p≥0.05 3 vs. 1 (Ref): 0.92 (0.74, 1.19), p≥0.05 4 vs. 1 (Ref): 1.07 (0.80, 1.44), p≥0.05 5 vs. 1 (Ref): 0.99 (0.74, 1.33), p≥0.05 p for trend=0.80	
		Subgroup analyses where participants with preeclampsia were excluded did not substantively alter the results	
Courtney, 2020 ³	Modified DASH (continuous alignment)	Systolic BP	Key confounders accounted for:
PCS, Ireland, ROLO Analytic N =465	Food Diary at: TM1, TM2, and TM3	Multiple linear regression β (95% CI) per increase in DASH score	Age, Race/ethnicity, SEP, Pre- pregnancy BMI,
• Age (y): 32.2±4.0	DP Description:	<u>TM2:</u> -0.169 (-0.961, 0.622), p=0.675	Other covariates: Trial group; TEI
• Race/Ethnicity (%): White: 97.7; Other: 2.3	 Positive components: fruit and fruit juice; vegetables; whole grains; nuts/seeds/legumes; low-fat dairy 	<u>TM3:</u> -0.268 (-0.987, 0.451), p=0.465	Funding: Health Research Centre for
 SEP: Education (%): <3rd level: 42.8 	 Negative components: red lean/red processed meat; SSB, sweet snacks, and desserts; sodium; salty snacks 	Multiple linear regression eta per 5-unit increase in DASH score	Health and Diet Research; National Maternity Hospital Medical Fund
• Early pregnancy BMI (%): 25- 29.9: 38.1; ≥30: 16.5		<u>TM2:</u> 0.005, p=0.990	Summary: Greater alignment with DASH was associated with lower third

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 Current GDM (%): 2.2 Current T1 or T2 DM (%): 0.0 	Outcome and assessment methods: BP assessed at: 28 GW and 34 GW	<u>TM3:</u> -0.330, p=0.471	trimester, but not second trimester, diastolic blood pressure and mean
• Smoking (%): 2.7	Systolic BP and Diastolic BP measured by the doctors and/or midwife at rest.	Diastolic BP Multiple linear regression	arterial pressure. Alignment with DASH was not associated with second or third
	MAP calculated as [DBP + 1/3 x (SBP - DBP)]	β (95% CI) per increase in DASH score	trimester systolic blood pressure.
		<u>TM2:</u> -0.439 (-0.953, 0.075), p=0.094	
		<u>TM3:</u> -0.680 (-1.194, -0.166), p=0.010	
		Multiple linear regression β per 5-unit increase in DASH score	
		<u>TM2:</u> -0.385, p=0.236	
		<u>TM3:</u> -0.755, p=0.022	
		Mean Arterial Pressure Multiple linear regression β (95% CI) per increase in DASH score	
		<u>TM2:</u> -0.349 (-0.883, 0.184), p=0.199	
		<u>TM3:</u> -0.543 (-1.043, -0.043), p=0.033	
		Multiple linear regression β per 5-unit increase in DASH score	
		<u>TM2:</u> -0.255, p=0.451	
		<u>TM3:</u> -0.615, p=0.055	
Ding, 2021⁵	CDGCI-PW (continuous alignment)	Gestational Hypertension	Key confounders accounted for:
PCS, China, Tongji MCHC	FFQ at: 16-20 GW	Multivariable logistic regression OR (95% CI) per 10 pt score increase	Age, SEP, Pre-pregnancy BMI, Parity,
Analytic N =1,489	DP Description:	0.30 (0.20,0.37), p<0.01	Other covariates: GWG in TM2
 Age (y): Q1: 28.3±3.5; Q4 28.6±3.5 SEP: Education (%): ≤9y: Q1: 4.2; Q4: 1.4; ≥16y: Q1: 50.6; Q4: 67.7, p<0.01 Household income (%): ≤1000 Yuan/mo: Q1: 1.2; 	 Positive components: staple foods (cereals and their products, potatoes, and beans other than soybeans); green leafy and colored vegetables (red and yellow); milk and its products (milk, yogurt, formula milk powder); soybean and its products; nuts; lean meat (livestock and poultry meat); animal blood and liver; iodized table salt, iodine-rich seafood 	Alternately excluding one component of the CDGCI-PW score did not substantively change the association	Funding: National Program on Basic Research Project of China; The Fundamental Research Funds for the Central Universities
			Summary: Greater alignment with the

nesr.usda.gov | 45

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
Q4: 0.2; ≥10,000 Yuan/mo: Q1: 12.7; Q4: 22.8, p<0.01 ● Pre-pregnancy BMI: Q1:	 Negative components: pickled food, fried food, cream cake, chocolate, other high-salt, high-oil, and high-sugar food 		CDGCI-PW was associated with lower risk of gestational HTN.
21.1±2.9; Q4: 20.7±2.5	Outcome and assessment methods: Gestational HTN assessed at: each study visit ≥20 GW		
	<u>Gestational HTN:</u> Diagnosed if BP ≥140/90 mmHg		
Flor-Alemany, 2021 ⁶	MedDietScore (continuous alignment) FFQ at: 16 GW	Systolic BP Linear regression	Key confounders accounted for: Age, Physical activity, SEP, Pre-
PCS, Spain, GESTAFIT Analytic N =107	DP Description:	β, mmHg -0.260, p=0.007	pregnancy BMI, Smoking, DM in current pregnancy
 Age (y): 33.2±4.4 SEP: Education (%): Low: 10.9; 	 Positive components: Vegetables; Potatoes; Legumes; Fruit; Whole Grains; Fish; Olive Oil. 	Diastolic BP	Funding: Regional Ministry of Health of the Junta de Andalucía; University of
High: 58.8 • Pre-pregnancy BMI: (%) 25-	 Negative components: Red and Processed Meat; Poultry; Full-Fat Dairy 	Linear regression β, mmHg	Granada, Unit of Excellence on Exercise and Health (UCEES); Spanish
<30: 25.2; ≥30: 10.1 • Fasting glucose (mg/dL):	Alcohol component excluded	-0.198, p=0.044	Ministry of Education, Culture and Sports
77.4±15.9 • Smoking (%): Current: 8.4;	Outcome and assessment methods: BP assessed at: 34 GW		Summary: Grater alignment with the
Former: 37.0	Systolic BP and Diastolic BP measured after 5 min rest on 2 separate occasions (w/ 2 min btw trials). Lowest value selected for analysis.		MedDietScore at 16 GW was associated with lower SBP and DBP at 34 GW.
Fulay, 2018 ⁷	DASH & DASH OMNI (continuous alignment)	Systolic BP	Key confounders accounted for:
PCS, United States, Project	FFQ at: ~11 GW	Linear regression β (95% CI), mmHg	Age, Race/ethnicity, SEP, Pre- pregnancy BMI, Smoking, Parity,
Viva	DP Description:	<u>DASH:</u> 0.07 (-0.04, 0.19), p≥0.05	History of HDP, DM in current pregnancy
Analytic N =1,719	DASH	<u>DASH OMNI:</u> 0.05 (-0.06, 0.17), p≥0.05	programoy
 Age (y): 32.2±4.9 Race/Ethnicity (%): White: 71.9; Black: 12.3; Hispanic: 6.5; Asian: 5.6; Other: 3.6 SEP: Household income (%): <\$20,000/y: 3.1; >\$70,000/y: 60.1 Education (%): Primary: 9.4; ≥College: 32.0 	 Positive components: fruits; vegetables; whole grains; nuts/legumes; low-fat dairy 		Other covariates: GWG until FFQ; TEI
	 Negative components: sodium; SSB; red and/or processed meats 	Diastolic BP Linear regression β (95% CI), mmHg	Funding: NIH
	DASH OMNI	<u>DASH:</u> 0.05 (-0.04, 0.14), p≥0.05	Summary: Alignment with DASH or DASH OMNI was not associated with
	 Positive components: fruits; vegetables; whole grains; nuts/legumes; low-fat dairy; MUFA and PUFA 	<u>DASH OMNI:</u> 0.05 (-0.04, 0.14), p≥0.05	systolic or diastolic blood pressure or risk of hypertensive disorders of
		Hypertensive Disorders of Pregnancy	pregnancy.

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
• Pre-pregnancy BMI (%): 25- <30: 21.7; ≥30: 12.9	 Negative components: sodium; SSB; red and/or processed meats 	Logistic regression OR (95% CI)	
 Previous HTN (%): 4.5 Current GDM (%): 5.2 T1 or T2 DM (%): 0.0 	Outcome and assessment methods: BP assessed at: 36 GW; HDP assessed at: >20 GW	<u>DASH:</u> 1.00 (0.96, 1.03), p≥0.05	
• Smoking (%): 10.9	Outcomes taken from outpatient charts.	<u>DASH OMNI:</u> 0.99 (0.96, 1.03), p≥0.05	
	HDP: Gestational HTN or PE	Additionally adjusting for Western and	
	<u>Gestational HTN:</u> SBP >140 mmHg or DBP >90 mmHg ≥2x	Prudent dietary patterns did not substantially alter the results	
	<u>PE:</u> Gestational HTN and proteinuria (dipstick 1+ ≥2x or ≥2 once) >4h but ≤7d apart, or chronic HTN and proteinuria		
Hillesund, 2014 ¹⁰	NND (categorical alignment)	Total Preeclampsia	Key confounders accounted for:
PCS, Norway, MoBa	FFQ at: 20.7±3.7 GW	Logistic regression OR (95% CI)	Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking,
Analytic N =72,072	DP Description:		Parity, History of HDP, DM in current
 Age (y): 30.1±4.6 ≥35 (%): 12.2 Race/Ethnicity (%): White: >99 SEP: Education (%): ≤12y: 31.1; 	 Positive components: meal frequency; Nordic fruits (apples, pears, plums, and strawberries); root vegetables; cabbages; potatoes:total potatoes, rice, or pasta; whole grain bread over refined bread; oatmeal; foods from the wild countryside (wild fish, 	<u>All participants</u> Medium vs. Low (Ref): 0.91 (0.83, 1.00) High vs. Low (Ref): 0.86 (0.78, 0.95) <u>Smoking participants</u>	pregnancy Other covariates: TEI Funding: Norwegian Ministry of Health;
≥17y: 25.3 • Pre-pregnancy BMI (%): 25- 29.9: 21.1; 30-34.9: 6.7; ≥35:	seafood, game, and wild berries); milk over juice; water:SSB	Medium vs. Low (Ref): 0.63 (0.44, 0.90) High vs. Low (Ref): 0.57 (0.37, 0.87)	Norwegian Ministry of Education and Research; NIH/NIEHS; NIH/NINDS; Norwegian Research Council/FUGE;
2.5 • T1 or T2 DM (%): 0.6	Outcome and assessment methods: Total PE assessed at: >20 GW	<u>Non-smoking participants</u> Medium vs. Low (Ref): 0.94 (0.85, 1.04)	University of Agder
 Current GDM (%): 0.9 Smoking (%): Occasional: 2.7; 	Early PE assessed at: >20 GW to <34 GW	High vs. Low (Ref): 0.88 (0.80, 0.98)	Summary: Greater alignment with the NND was associated with reduced risk
Daily: 5.2	<u>Total PE:</u> Reported preeclampsia (>140 mmHg SBP or >90 mmHg DBP w/ proteinuria (protein excretion ≥ 0.3 g/24h or >1+ on dip-stick assay), both measured $\ge 2x$),	<u>Participants with T1 or T2 DM</u> High vs. Low (Ref): 0.38 (0.15, 0.95)	of total preeclampsia in all participants, participants who smoked during pregnancy, participants who didn't
	eclampsia, HELLP syndrome (hemolysis, elevated liver enzymes, and low platelet count), or preeclampsia	<u>Participants with GDM</u> High vs. Low (Ref): 0.86 (0.36, 2.0)	smoke during pregnancy, and participants with T1 or T2 DM. Alignment with the NND was not
	superimposed on chronic HTN on the birth notification form	Early Preeclampsia Logistic regression	associated with reduced risk of
	Early PE: PE diagnosed <34 GW	OR (95% CI)	preeclampsia in participants with GDM. Greater alignment with the NND was associated with reduced risk of early
		All participants	preeclampsia. Stronger associations

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Medium vs. Low (Ref): 0.84 (0.63, 1.12) High vs. Low (Ref): 0.71 (0.52, 0.96)	were generally observed among nulliparous participants and participants w/ BMI <30, whereas weaker or
		Removing participants w/ DM or chronic HTN did not substantively change the results	nonsignificant associations were observed among multiparous participants and participants w/ BMI ≥30.
		Stronger associations were generally observed among nulliparous participants and participants w/ BMI <30, whereas weaker or nonsignificant associations were observed among multiparous participants and participants w/ BMI ≥30 (data not shown)	
Hillesund, 2018 ¹¹	NFFD diet (continuous alignment)	Total Preeclampsia	Key confounders accounted for:
PCS, Norway, NFFD	FFQ at: ~15 GW	Multivariate logistic regression OR (95% CI) per 1 pt score increase	Age, SEP, Pre-pregnancy BMI, Smoking, Parity, History of HDP, DM in
Analytic N =582	DP Description:	0.90 (0.73, 1.10), p=0.325	current pregnancy
 Age (y): 28.0±4.4 (%): ≥35: 6.8 Race/Ethnicity (%): "Predominantly White" 	 Positive components: regular meals; drinking water when thirsty; vegetables w/ dinner; fruits and vegetables btw meals; reading nutrition labels before buying 	Severe Preeclampsia/HELLP/Eclampsia Multivariate logistic regression OR (95% CI)	Other covariates: Marital status, Randomization assignment
 SEP: ○ Education (%): ≤12y: 31.8; ≥16y: 35.5 	 Negative components: sweets and snacks without appreciation; large portion sizes of unhealthy foods; added sugar; salt; eating beyond satiety 	0.90 (0.67, 1.17), p=0.429	
 Occupation (%): Work outside home: 84.2; Student: 8.7; Unemployed: 3.9; Sick leave/disabled: 1.9; 	Outcome and assessment methods:	Sensitivity analysis confined to the control group in the original trial did not materially impact the results	
	PE assessed at: >20 GW		
Homemaker: 1.4 ◦ Income (%): ≤400,000 NOK: 31.2; >700,000 NOK: 34.4;	Severe PE/HELLP/Eclampsia assessed at: >20 to <34 GW		
NR: 6.6 • Pre-pregnancy BMI (%): 25- 29.9: 20.2; ≥30: 7.6 • Pre-existing DM (%): 0.0 • Current GDM (%): 9.1 • Smoking (%): 3.9	<u>PE:</u> SP ≥140 mmHg or DP ≥90 mmHg plus proteinuria (protein excretion ≥0.3 g/24 h or ≥1+ on dipstick), both measured ≥2x		
	<u>Severe PE/HELLP/Eclampsia:</u> PE <34 GW and/or severity of symptoms, obtained from hospital charts. HELLP/eclampsia defined as PE affecting hemolysis, liver function, and platelet counts.		

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
Hillesund, 2018 ¹¹ cont. Analytic N=472		 Total Preeclampsia Multivariate logistic regression OR (95% Cl) 0.78 (0.62, 0.99), p=0.038 Severe Preeclampsia/HELLP/Eclampsia Multivariate logistic regression OR (95% Cl) 0.74 (0.54, 1.01), p=0.060 Sensitivity analysis confined to the control group in the original trial resulted in non- significant findings for total PE, but did not materially impact the results of Severe PE/HELLP/Eclampsia 	 Key confounders accounted for: Age, Physical activity, SEP, Pre- pregnancy BMI, Smoking, Parity, History of HDP, DM in current pregnancy Other covariates: Marital status; Randomization assignment Funding: South-Eastern Norway Regional Health Authority; Municipalities of southern Norway; University of Agder Summary: When additionally controlling for physical activity, greater alignment with the Norwegian Fit for Delivery diet score in early pregnancy was significantly associated with a reduced risk of total preeclampsia, and was nearly significantly associated with a reduced risk of severe preeclampsia/HELLP/eclampsia. When confined to the control group in the original trial, findings for risk of total preeclampsia were no longer significant.
Li, 2021 ¹⁴ PCS, United States, NICHD Fetal Growth Studies- Singletons Analytic N =Gestational HTN: 8- 13 GW: 1,505; 16-22 GW: 1,682; 24-29 GW: 1,652; PE: 8-13 GW: 1,502; 16-22 GW: 1,685; 24-29 GW: 1,649 • Age (y): • AHEI: Q1: 25.9±5.57; Q4: 30.5±4.84, p<0.001	 AHEI, aMED, & DASH (quartiles of alignment) FFQ at: 8-13 GW; 24h recall at 16-22 GW, 24-29 GW DP Descriptions: <u>AHEI</u> Positive components: Vegetables (not potatoes, French fries); Fruit; Legumes and Nuts; Whole Grains; Long-Chain Fats (EPA + DHA); PUFA Negative components: Red and Processed Meat; Sugar Sweetened Beverages and Fruit Juice; Sodium 	Gestational Hypertension Log-binomial regression RR (95% CI) <u>AHEI</u> <i>8-13 GW</i> Q2 vs. Q1 (Ref): 0.59 (0.30, 1.15), p≥0.05 Q3 vs. Q1 (Ref): 0.71 (0.35, 1.46), p≥0.05 Q4 vs. Q1 (Ref): 0.38 (0.14, 1.04), p≥0.05 p for trend=0.06 <i>16-22 GW</i> Q2 vs. Q1 (Ref): 0.91 (0.47, 1.79), p≥0.05	Key confounders accounted for: Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking, Parity, History of HDP, DM in current pregnancy Other covariates: Marital status; Family history of DM; Sleep duration; TEI Funding: NICHD; AARA Summary: Greater alignment with the

 a MED: 01: 28.45.70; 04: 28.59: 04: 001 a Match and trans-fat components excluded 28.55 9; 04: 01 a Match 48, 9: 0001 a AractEnnichy (%): 0.4 R1; 0.1 (24.1; 04: 148; 04: 010; 04: 01, 04:	Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 DASH: Q1: 25: 524.3; Q4: 3MHD Positive components: Vegetables: Fruit, Nuts; Fish; Lean Meat (poultry, lean beef) AHEI: MRS Q1: 43: 1; Q4: 25: 92: 00: 12: 43; Q4: 25: 54; NHW: Q1: 29: 02: 03:		 Alcohol and trans-fat components excluded 		DASH at 8-13 GW and 16-22 GW, but
 30 444.84, P2.001 Race/Ethnicity (%): AHE: NB: 01: 49.1: Q4: 24.9 (MW: Q1: 17.9; Q4: 25.4; NFW: Q1: 25.9; Q4: 26.3; PC: 001 DASH: VBE: Q1: 39.9; Q4: 25.4; NFW: Q1: 25.9; Q4: 26.3; PC: 001 DASH: VBE: Q1: 39.9; Q4: 25.4; NFW: Q1: 25.9; Q4: 26.3; PC: 001 DASH: VBE: Q1: 39.9; Q4: 26.4; PC: 001 DASH: VBE: Q1: 39.9; Q4: 26.4; PC: 001 DASH: VBE: Q1: 31.9; Q4: 27.5; APF: Q1: 11.0; Q4: 28.3; PC: 001 DASH: VBE: Q1: 31.9; Q4: 29; NFW: Q1: 10.1; Q4: 37.5; APF: Q1: 11.0; Q4		aMED		
14.9; Hispanic: 01: 24.1; 04: Negative components: Red and Processed Meat; 03 vs. 01 (Ref): 0.49 (0.21, 10, pe0.06 03 vs. 01 (Ref): 0.49 (0.21, 10, pe0.06 04 vs. 01 (Ref): 0.49 (0.21, 1.20, pe0.06 04 vs. 01 (Ref): 0.49 (0.41, 1.21, pe0.06 04 vs. 01 (Ref): 0.49 (0.41, 1.12), pe0.06 04 vs. 01 (Ref): 0.41 (0.41, 1.41	 Race/Ethnicity (%): 		24-29 GW	hypertension. All associations between aMED and AHEI and gestational
 Alconol component excluded a MED: Alconol component excluded Alconol compo	14.9; Hispanic: Q1: 24.1; Q4: 26.2; NHW: Q1: 17.9; Q4:		Q3 vs. Q1 (Ref): 0.48 (0.21, 1.06), p≥0.05	alignment with both at 8-13 GW neared
 aMED: NHB: C1: 39.9; C4: 22; Hispanic C1: 28, P. (4): 25; APL: Q1: 110; Q4: 25; APD: Q1: 110; Q4: 26; APD: Q1: 110; Q4: 27; APD: Q1: 101; Q4: 101; Q4		 Alcohol component excluded 		
 25:4; NHW: Q1: 20:5; Q4: 25:4; PAP: Q1: 11.0; Q4: 26:3; PAP: Q1: 11.0; Q4: 27:5; API: Q1: 13.1; Q4: 29: Q1: (Ref): 0.47 (0.18; 1.28); P2: Q5: Q4: 20: Q1: (Ref): 0.47 (0.19; P2: Q5: Q4: 20: Q1: (Ref): 0.47 (0.19; P2: Q5: Q4: 20: Q1: (Ref): 0.47 (0.19; P2: Q5: Q4: 20: Q1: (Ref): 0.41 (0.39; 1.70); P2: Q5: Q4: 20: Q1: (Ref): 1.12 (0.55; 2.27); P2: Q5: Q4: 20: Q1: (Ref): 0.31 (0.51; 1.60); P2: Q5: Q4: 20: Q1: (Ref): 0.32 (0.43; 1.56); P2: Q5: Q4: 20: Q1: (Ref): 0.42 (0.43; 1.56); P2: Q5: Q4: 20: Q1: (Ref):	o aMED: NHB: Q1: 39.9; Q4:	DASH	aMED	Greater alignment with the AHEI at 24–
 DASH: NHB: Q1: 55.3; Q4: 14.0; Hispanic: Q1: 21.5; Q4: 22.2; NHW: Q1: 10.1; Q4: 37.5; AAPI: Q1: 13.1; Q4: 19.3; prot.001 Education (%): o AHE: <high q1:<br="" school:="">12.2; Q4: 9.4; High school/Pequivalent: Q1: 27.5; Q4: 12.4; Graduate degree: Q1: 6.9; Q4: 28.7, p<0.001; o BASH: <high q1:<br="" school:="">14.6; Q4: 8.3; High school/Pequivalent: Q1: 27.5; Q4: 12.4; Graduate degree: Q1: 9.0; Q4: 28.0, p<0.001; o BASH: <high q1:<br="" school:="">14.6; Q4: 8.3; High school/Pequivalent: Q1: 27.5; Q4: 12.2; G4: 30.6, p<0.001; o BASH: <high q1:<br="" school:="">14.6; Q4: 8.3; High school/Pequivalent: Q1: 27.5; Q4: 12.4; Graduate degree: Q1: 9.0; Q4: 28.0, p<0.001; o BASH: <high q1:<br="" school:="">14.6; Q4: 8.3; High school/Pequivalent: Q1: 27.5; Q4: 12.4; Graduate degree: Q1: 9.0; Q4: 28.0, p<0.001; o BASH: <high q1:<br="" school:="">14.6; Q4: 8.3; High school/Pequivalent: Q1: 27.8; Q4: 12.4; Graduate degree: Q1: 9.0; Q4: 28.0, p<0.001; o BASH: <high q1:<br="" school:="">14.6; Q4: 8.3; High school/Pequivalent: Q1: 27.8; Q4: 12.4; Graduate degree: Q1: 5.6; Q4: 30.6, p<0.001; o AHEI: <shigh q1:<br="" school:="">14.6; Q4: 8.3; High school/Pequivalent: Q1: 27.8; Q4: 12.4; Graduate degree: Q1: 5.6; Q4: 30.6, p<0.001; o AHEI: <shigh q1:<br="" school:="">14.6; Q4: 8.3; High school/Pequivalent: Q1: 27.8; Q4: 28.0; Q1: 20.3; Q4: 11.4; Pot.001</shigh></shigh></high></high></high></high></high></high></high> Castational HTN w/ proteinuria (20.3g protein in 24.9; W1 (M2); o AHEI: <sign q1:<br="" school:="">14.6; Q4: 8.5; High school: Q1: 20.3; Q4: 11.4; Pot.001</sign> Castational HTN w/ proteinuria (20.3g protein in 24.1; wo negation group for both gestational HTN and PE was participants w/o either diagnosis. Castational HTN w/ proteinuria (20.3; Q4: 9, 21 (Ref): 0.19 (0.51, 1.60), p≥0.05; Q3 vs. Q1 (Ref): 0.48 (0.17, 1.17), p≥0.05; Q3 vs. Q1 (Ref): 0.48 (0.17, 1.17), p≥0.05; Q3 vs. Q1 (Ref): 0.48 (0.43, 1.56), p≥0.05; Q3 vs. Q1 (Ref): 0.49 (0.43, 1.56), p≥0.05; Q3 vs. Q1 (Ref): 0.49 (0.43, 1.56), p≥0.05; Castational HTN and PE was participants w/o either diagnosis. Castational HTN a	25.4; NHW: Q1: 20.5; Q4: 26.0; AAPI: Q1: 11.0; Q4:	legumes); Nuts and Legumes; Fruit and Fruit Juice;	Q2 vs. Q1 (Ref): 0.86 (0.47, 1.59), p≥0.05	29 GW, but not 8-13 GW or 16-22 GW, was associated with reduced risk of
37.5; AAPI: Q1: 13.1; Q4: 19.3, p<0.001Outcome and assessment methods: PE and Gestational HTN assessed at >20 GW $16-22 GW$ Q2 vs. Q1 (Ref): 1.13 (0.60, 2.10), p≥0.05 Q4 vs. Q1 (Ref): 0.81 (0.39, 1.70), p≥0.05 Q4 vs. Q1 (Ref): 0.81 (0.39, 1.70), p≥0.05 Q4 vs. Q1 (Ref): 0.71 (0.31, 1.61), p≥0.05 Q4 vs. Q1 (Ref): 1.03 (0.52, 2.03), p≥0.05 Q2 vs. Q1 (Ref): 1.03 (0.52, 2.03), p≥0.05 Q2 vs. Q1 (Ref): 1.03 (0.52, 2.03), p≥0.05 Q4 vs. Q1 (Ref): 1.09 (0.51, 2.35), p≥0.05 porteinuria.quartile, but all other associations between aMED and preclampsia were non-significant. The third quartile of alignment with DASH at 16-22 GW was associated with reduced risk of preeclampsia compared to the lowest quartile, but all other associations between DASH and risk of preeclampsia were non-significant. $0.41 2.4$, Graduate degree: Q1: 9.0, Q4: 260, p<0.001; $0.A5H$: <high q1:<br="" school:=""></high> 14.8 ; Q4: 8.5; High school:Q2: $0.41 : 26, Q4 = 0.3$; High school:Q1: 14.8 ; Q4: 8.5; High school:Q1: 14.8 ; Q4: 8.6; PDifter diagnosis.Difter diagnosis.Difter diagnosis. $0.4 \pm C1: 25-29: Q1: 29.8; Q4:21.3; 230: Q1: 20.3; Q4:14.8; Q4: 8.5; PighDifter diagnosis.Difter d$	 DASH: NHB: Q1: 55.3; Q4: 14.0; Hispanic: Q1: 21.5; Q4: 		Q4 vs. Q1 (Ref): 0.47 (0.18, 1.28), p≥0.05	associated with reduced risk of
 A HEI: <high q1:<br="" school:="">12.2; Q4: 9.4; High school/equivalent: Q1: 27.5; Q4: 12.4; Graduate degree: Q1: 6.9; Q4: 28.7, p<0.001; o a MED: <high q1:<br="" school:="">14.6; Q4: 8.3; High school/equivalent: Q1: 27.8; Q4: 12.4; Graduate degree: Q1: 9.0; Q4: 26.0, p<0.001; o DASH: <high q1:<br="" school:="">14.8; Q4: 8.5; High school/equivalent: Q1: 31.0; Q4: 10.5; Graduate degree: Q1: 5.6; Q4: 30.6, p<0.001</high></high></high> Pre-pregnancy BM: (%): o AHEI: 25-29: Q1: 29.8; Q4: 21.3; 230: Q1: 21.3; Q4: 91.7, p<0.001 Controm se extracted from postpartum discharge diagnosis. Comparison group for both gestational HTN and PE was participants w/o either diagnosis. Comparison group for both gestational HTN and PE was participants w/o either diagnosis. Comparison group for both gestational HTN and	19.3, p<0.001		Q2 vs. Q1 (Ref): 1.13 (0.60, 2.10), p≥0.05	quartile, but all other associations between aMED and preeclampsia were
Q4: 12.4; Graduate degree: Q1: 6.9; Q4: 28.7, p<0.001;Gestational HTN: unspecified and new onset HTN, defined as SBP ≥140 mmHg or DBP ≥90 mmHg w/o proteinuria. $24-29 \ GW$ $24-29 \ GW$ $Qurile, but all other associationsdurile, but all other associationso AMED: PE: New onset of HTN w/ proteinuria (≥0.3g protein in24 urine). Mild & severe PE, HELLP syndrome, andeclampsia included within PE.24-29 \ GW24-29 \ GWQ2 \ vs. Q1 (Ref): 1.03 (0.52, 2.03), p≥0.05Q3 vs. Q1 (Ref): 1.12 (0.55, 2.27), p≥0.05Q4 \ vs. Q1 (Ref): 1.09 (0.51, 2.35), p≥0.05Pe: comparison group for both gestational HTN and PEwas participants w/o either diagnosis.PE: New onset of HTN w/ proteinuria (≥0.3g protein in24 urine). Mild & severe PE, HELLP syndrome, andeclampsia included within PE.PE: New onset of HTN w/ proteinuria (≥0.3g protein in24 urine). Mild & severe PE, HELLP syndrome, andeclampsia included within PE.PE: New onset of HTN w/ proteinuria (≥0.3g protein in24 urine). Mild & severe PE, HELLP syndrome, andeclampsia included within PE.PASH8-13 \ GWPASH8-13 \ GWPaSH$	 AHEI: <hìgh q1:<br="" school:="">12.2; Q4: 9.4; High</hìgh> 		Q4 vs. Q1 (Ref): 0.71 (0.31, 1.61), p≥0.05	alignment with DASH at 16-22 GW was associated with reduced risk of
school/equivalent: Q1: 27.8; Q4: 12.4; Graduate degree: Q1: 9.0; Q4: 26.0, p<0.001;	Q4: 12.4; Graduate degree: Q1: 6.9; Q4: 28.7, p<0.001;	defined as SBP ≥140 mmHg or DBP ≥90 mmHg w/o	Q2 vs. Q1 (Ref): 1.03 (0.52, 2.03), p≥0.05	quartile, but all other associations between DASH and risk of
 DASH: <high q1:<br="" school:="">14.8; Q4: 8.5; High school/equivalent: Q1: 31.0; Q4: 10.5; Graduate degree: Q1: 5.6; Q4: 30.6, p<0.001</high> Pre-pregnancy BMI: (%): • AHEI: 25-29: Q1: 20.8; Q4: 21.3; ≥30: Q1: 20.3; Q4: 11.4, p<0.001 aMED: 25-29: Q1: 30.1; Q4: 22.4; ≥30: Q1: 21.3; Q4: 9.7, p<0.001 aMED: 25-29: Q1: 30.1; Q4: 22.4; ≥30: Q1: 21.3; Q4: 9.7, p<0.001 aMED: 25-29: Q1: 20.3; Q4: 9.7, p<0.001 aMED: 25-29: Q1: 20.3; Q4: 9.7, p<0.001 aMED: 25-29: Q1: 20.3; Q4: 9.7, p<0.001 aMED: 25-29: Q1: 30.1; Q4: 9.7, p<0.001 aMED: 25-29: Q1: 20.3; Q4: 9.7, p<0.001 aMED: 25-29: Q1: 20.3; Q4: 9.7, p<0.001 	school/equivalent: Q1: 27.8; Q4: 12.4; Graduate degree:	24h urine). Mild & severe PE, HELLP syndrome, and	Q4 vs. Q1 (Ref): 1.09 (0.51, 2.35), p≥0.05	preeclampsia were non-significant.
School/equivalent. Q1: 51.0, Q4: 10.5; Graduate degree: Q1: 5.6; Q4: 30.6, p<0.001was participants w/o either diagnosis.Q2 vs. Q1 (Ref): 0.91 (0.51, 1.60), $p \ge 0.05$ Q3 vs. Q1 (Ref): 0.33 (0.12, 0.88), $p<0.05$ Q4 vs. Q1 (Ref): 0.45 (0.17, 1.17), $p\ge 0.05$ p for trend=0.04• Pre-pregnancy BMI: (%): • AHEI: 25-29: Q1: 20.3; Q4: 11.4, $p<0.001$ $16-22 GW$ Q2 vs. Q1 (Ref): 0.82 (0.43, 1.56), $p\ge 0.05$ Q3 vs. Q1 (Ref): 0.79 (0.40, 1.58), $p\ge 0.05$ Q3 vs. Q1 (Ref): 0.79 (0.40, 1.58), $p\ge 0.05$ Q3 vs. Q1 (Ref): 0.19 (0.05, 0.65), $p<0.05$	 DASH: <high q1:<br="" school:="">14.8; Q4: 8.5; High</high> 		8-13 GW	
• AHEI: 25-29: Q1: 29.8; Q4: 21.3; ≥30: Q1: 20.3; Q4: 11.4, p<0.001 $16-22 GW$ • aMED: 25-29: Q1: 30.1; Q4: 22.4; ≥30: Q1: 21.3; Q4: 9.7, p<0.001	Q4: 10.5; Graduate degree: Q1: 5.6; Q4: 30.6, p<0.001		Q3 vs. Q1 (Ref): 0.33 (0.12, 0.88), p<0.05 Q4 vs. Q1 (Ref): 0.45 (0.17, 1.17), p≥0.05	
o aMED: 25-29: Q1: 30.1; Q4: Q2 vs. Q1 (Ref): 0.82 (0.43, 1.56), p≥0.05 22.4; ≥30: Q1: 21.3; Q4: 9.7, Q3 vs. Q1 (Ref): 0.79 (0.40, 1.58), p≥0.05 p<0.001	 ○ AHEI: 25-29: Q1: 29.8; Q4: 21.3; ≥30: Q1: 20.3; Q4: 			
	o aMED: 25-29: Q1: 30.1; Q4: 22.4; ≥30: Q1: 21.3; Q4: 9.7,		Q2 vs. Q1 (Ref): 0.82 (0.43, 1.56), p≥0.05 Q3 vs. Q1 (Ref): 0.79 (0.40, 1.58), p≥0.05	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 DASH: 25-29: Q1: 29.6; Q4: 25.1; ≥30: Q1: 19.0; Q4: 11.6, p=0.01 Current DM (%): 0.0 History of severe PE if pre- pregnancy BMI <30: 0.0 Smoking (%): Pre-pregnancy BMI <30: 0.0 		24-29 GW Q2 vs. Q1 (Ref): 0.97 (0.50, 1.86), p≥0.05 Q3 vs. Q1 (Ref): 1.06 (0.49, 2.29), p≥0.05 Q4 vs. Q1 (Ref): 0.82 (0.34, 1.96), p≥0.05 p for trend=0.75 Preeclampsia Log-binomial regression RR (95% CI)	
		AHEI 8-13 GW Q2 vs. Q1 (Ref): 1.24 (0.61, 2.51), p≥0.05 Q3 vs. Q1 (Ref): 1.14 (0.53, 2.43), p≥0.05 Q4 vs. Q1 (Ref): 0.77 (0.30, 2.00), p≥0.05 p for trend=0.71	
		16-22 GW Q2 vs. Q1 (Ref): 0.83 (0.43, 1.60), p≥0.05 Q3 vs. Q1 (Ref): 1.22 (0.66, 2.24), p≥0.05 Q4 vs. Q1 (Ref): 0.26 (0.09, 0.78), p<0.05 p for trend=0.07	
		24-29 GW Q2 vs. Q1 (Ref): 0.85 (0.44, 1.63), p≥0.05 Q3 vs. Q1 (Ref): 0.69 (0.34, 1.41), p≥0.05 Q4 vs. Q1 (Ref): 0.31 (0.11, 0.87), p<0.05 p for trend=0.03	
		<u>aMED</u> <i>8-13 GW</i> Q2 vs. Q1 (Ref): 1.09 (0.54, 2.21), p≥0.05 Q3 vs. Q1 (Ref): 0.93 (0.38, 2.30), p≥0.05 Q4 vs. Q1 (Ref): 0.68 (0.25, 1.85), p≥0.05 p for trend=0.53	
		16-22 GW Q2 vs. Q1 (Ref): 0.30 (0.13, 0.69), p<0.05 Q3 vs. Q1 (Ref): 0.77 (0.41, 1.45), p≥0.05 Q4 vs. Q1 (Ref): 0.67 (0.34, 1.32), p≥0.05 p for trend=0.43	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		24-29 GW	
		Q2 vs. Q1 (Ref): 0.91 (0.47, 1.75), p≥0.05	
		Q3 vs. Q1 (Ref): 1.02 (0.51, 2.04), p≥0.05	
		Q4 vs. Q1 (Ref): 0.47 (0.18, 1.21), p≥0.05	
		p for trend=0.22	
		DASH	
		8-13 GW	
		Q2 vs. Q1 (Ref): 0.99 (0.49, 2.02), p≥0.05	
		Q3 vs. Q1 (Ref): 1.27 (0.59, 2.74), p≥0.05	
		Q4 vs. Q1 (Ref): 0.72 (0.28, 1.89), p≥0.05	
		p for trend=0.75	
		16-22 GW	
		Q2 vs. Q1 (Ref): 0.77 (0.41, 1.45), p≥0.05	
		Q3 vs. Q1 (Ref): 0.33 (0.13, 0.83), p<0.05	
		Q4 vs. Q1 (Ref): 0.94 (0.45, 1.96), p≥0.05	
		p for trend=0.50	
		24-29 GW	
		Q2 vs. Q1 (Ref): 0.70 (0.35, 1.41), p≥0.05	
		Q3 vs. Q1 (Ref): 0.82 (0.39, 1.73), p≥0.05	
		Q4 vs. Q1 (Ref): 0.56 (0.23, 1.38), p≥0.05	
		p for trend=0.25	
Makarem, 2022 ¹⁶	aMED (categorical alignment, quintiles of alignment)	Preeclampsia or Eclampsia	Key confounders accounted for:
PCS, United States, nuMoM2b	FFQ at: 6-<14 GW	Multivariable logistic regression	Age, Race/ethnicity, SEP, Pre-
Analytic N =7,798		OR (95% CI)	pregnancy BMI, Smoking, Parity,
-	DP Description:		History of HDP,
• Age (y): 27.4±5.5	 Positive components: Vegetables (not potatoes); 	<u>Categorical</u>	
○ (%): ≥35: 9.7	Legumes; Fruit; Nuts; Whole Grains; Fish;	Moderate vs. Low (Ref): 0.85 (0.68, 1.07),	Other covariates: Marital status; Family history of CVD
 Race/Ethnicity (%): NHW: 63.9; Hispanic: 16.6; NHB: 	MUFA:SFA	p=0.17	Family history of CVD
10.5; Asian: 4.3; Other: 4.6	Moderate component: Alcohol	High vs. Low (Ref): 0.72 (0.55, 0.93)	Funding: NIH/ORWH BIRCWH;
• SEP:	•	p=0.01	NIH/NHLBI; NIH/NICHD; OBSSR;
• Education (%): <high school:<="" td=""><td>Negative component: Red and Processed Meat</td><td></td><td>NCATS; NIH/NIA; the Barbra Streisand</td></high>	Negative component: Red and Processed Meat		NCATS; NIH/NIA; the Barbra Streisand
5.7; ≥Bachelor's: 55.6	Outcome and assessment methods:	Quintiles	Women's Cardiovascular Research and
 Baseline BMI ≥30 (%): 19.5 History of HDB (%): 100% 	PE or Eclampsia and Gestational HTN assessed at:	2 vs. 1 (Ref): 0.93 (0.73, 1.18), p=0.54	Education Program; the Erika J. Glazer
History of HDP (%): 100% nulliparous	>20 GW	3 vs. 1 (Ref): 0.61 (0.44, 0.86), p=0.005	Women's Heart Research Initiative;
• Current GDM (%): 3.8	Gestational HTN: New onset SBP ≥140mmHg or DBP	4 vs. 1 (Ref): 0.67 (0.48, 0.94), p=0.02	AHA; NIH/NINDS; the Gerstner Family
• Smoking (%): Ever: 41.4	≥90mmHg twice ≥4h apart	5 vs. 1 (Ref): 0.65 (0.46, 0.92), p=0.02	Foundation

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
	<u>PE:</u> Gestational HTN w/ proteinuria (≥0.3 g protein in 24h urine) <u>Eclampsia:</u> New-onset tonic-clonic, focal, or multifocal seizures in the absence of other causative conditions	p for trend=0.01 Gestational Hypertension Multivariable logistic regression OR (95% CI) <u>Categorical</u> Moderate vs. Low (Ref): 0.89 (0.74, 1.07),	Summary: Greater alignment with the aMED was associated with reduced risk of preeclampsia or eclampsia, but was not associated with risk of gestational hypertension.
		p=0.21 High vs. Low (Ref): 0.85 (0.70, 1.03), p=0.11	
		Quintiles	
		2 vs. 1 (Ref): 0.98 (0.81, 1.19), p=0.82 3 vs. 1 (Ref): 0.90 (0.70, 1.15), p=0.41 4 vs. 1 (Ref): 0.85 (0.66, 1.10), p=0.23 5 vs. 1 (Ref): 0.89 (0.69, 1.15), p=0.36 p for trend=0.77	
Miller, 2022 ¹⁸ PCS, United States, Kapiolani	HEI-2015, aMED, and DASH (continuous alignment) FFQ at: 11-13 GW, 18-20 GW, and 34-36 GW	Hypertensive Disorders of Pregnancy Logistic regression OR (95% CI)	Key confounders accounted for: Age, Race/ethnicity, Pre-pregnancy BMI, Parity, History of HDP, DM in
Medical Center for Women and	DP Descriptions:		current pregnancy
Children in Honolulu Analytic N =55	<u>HEI-2015</u>	HEI-2015: 0.89 (0.81, 0.99), p<0.05	Other covariates: Excess GWG
• Age (y): 30.3±5.9	 Positive components: Total vegetables; Greens and beans; Total fruit; Whole fruit; Fish; Whole grains; Total protein foods; Dairy; PUFA+MUFA:SFA Negative components: Refined grains; Calories from solid fat, added sugars, and alcohol; Sodium 	<u>aMED:</u> 0.74 (0.40, 1.37), p≥0.05	
 Race/Ethnicity (%): NHW: 30.9; Native Hawaiian: 23.6; Filipino: 23.6; Japanese: 21.8 Pre-pregnancy BMI (%): 25- 29.9: 25.5; ≥30: 36.4 Pre-existing DM (%): 0.0 History of PE (%): 0.0 		<u>DASH:</u> 0.71 (0.55, 093), p<0.05	Funding: Lakshmi Devi and Devraj Sharma Foundation; OLA Hawai'i
			Project; NIMHD
	aMED		Summary: Greater alignment with the HEI-2015 and DASH was associated
	 Positive components: Vegetables (excluding potatoes); Total fruit; Nuts; Legumes; Fish; Whole grains; MUFA: SFA 		with reduced risk of hypertensive disorders of pregnancy. Alignment with the aMED was not associated with risk of hypertensive disorders of pregnancy.
	Moderate component: Alcohol		
	 Negative component: Red and processed meat 		
	DASH		

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
	 Positive components: Vegetables (excluding potatoes); Fruit; Nuts, seeds, and legumes; Fish; Low-fat dairy 		
	 Negative components: Red and processed meat; SSB and fruit juice; Sodium 		
	Outcome and assessment methods: HDP assessed at: >20 GW		
	<u>HDP:</u> ≥140 mmHg SBP or ≥90 mmHg DBP on ≥2 occasions >4h apart; proteinuria; signs of end-organ damage, including serum Creatinine >1.1, AST/ALT 2x the upper boundary of the reference range, or platelets <100,000/dL		
Rifas-Shiman, 2099 ¹⁹	AHEI-P (continuous alignment9) FFQ at: 11.7±3.1 GW	Preeclampsia Logistic regression	Key confounders accounted for: Age, Race/ethnicity, SEP, Parity, Pre-
PCS, United States, Project Viva	DP Description:	OR (95% CI) per 5 pt score increase	pregnancy BMI
Analytic N=1,777	 Positive components: vegetables, fruit, white meat (poultry or fish):red meat, fiber, PUFA:SFA, and 	0.96 (0.84, 1.10)	Funding: NIH; Harvard Medical School; Harvard Pilgrim Health Care Foundation
 Age (y): 32.4±4.9 Race/Ethnicity (%): White: 72; 	folate, calcium, and iron from foodsNegative component: trans fat		Summary: Greater alignment with the AHEI-P was not associated with risk of
Other, ≥1 race: 16; Black/African American: 12 • SEP:	Outcome and assessment methods: PE assessed at: >20 GW		preeclampsia.
 ○ Education (%): ≤High school: 9; College graduate: 69 ○ Household income <\$40K 	<u>PE:</u> No chronic HTN but >140 mmHg SBP or >90 mmHg DBP w/ proteinuria (dipstick value of 1+ on ≥2 occasions or ≥2+ once) >4h but ≤7d apart		
(%): 13 • Pre-pregnancy BMI (%): 25-<30: 21; ≥30: 14 • Current GDM (%): ~5.0	OR chronic HTN w/ proteinuria		
Wiertsema, 2021 ²²	DASH (quartiles of alignment)	Systolic BP	Key confounders accounted for:
PCS, The Netherlands, Generation R Study	FFQ at: Median 13.5 GW DP Description:	Regression model β (95% CI), mm Hg	Age, Race/ethnicity, SEP, Pre- pregnancy BMI, Smoking, Parity, History of HDP,
Analytic N =Mid-pregnancy: 3,299; Late-pregnancy: 3,321		<u>Mid pregnancy</u> Q1 vs. Q4 (Ref): 0.05 (-1.09, 1.18)	Other covariates: Alcohol use, Folic
• Age (y): 31.4±4.4		Q2 vs. Q4 (Ref): 0.08 (-0.99, 1.15)	acid use, TEI, Gestational age at time of

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 Race/Ethnicity (%): Dutch: 100 SEP: Higher education (%): 59.3 Pre-pregnancy BMI: (%) ≥25: 22.2 Preexistent HTN (%): 0.0 Current GDM/DM (%): 0.0 Smoking (%): 17.0 	 Positive components: Vegetables (not potatoes and legumes); Nuts and Legumes; Fruit and Fruit Juice; Whole Grains; Low-Fat Dairy. 	Q3 vs. Q4 (Ref): -0.13 (-1.18, 0.91) Trend: -0.01 (-0.43, 0.40)	measurement
	 Negative components: Red and Processed Meat; Sweetened Beverages; Sodium Outcome and assessment methods: BP assessed at: Mid pregnancy (median 20.4 GW) and late pregnancy (median 30.2 GW) Systolic and diastolic BP measured by investigators after 5 min rest 	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
Wiertsema, 2021²² cont. Analytic N =3,414	Outcome and assessment methods: PE, Gestational HTN, HDP assessed at: >20 GW Obtained from medical records.	Any HDP Logistic regression OR (95% CI)	Key confounders accounted for: Race/ethnicity, Pre-pregnancy BMI, Parity, History of HDP,
	<u>Gestational HTN:</u> Systolic BP ≥140 mm Hg and/or diastolic BP ≥90 mm Hg in previously normotensive participants	Q1 vs. Q4 (Ref): 1.14 (0.78, 1.67) Q2 vs. Q4 (Ref): 0.84 (0.56, 1.25) Q3 vs. Q4 (Ref): 0.95 (0.64, 1.40) Trend: 0.95 (0.83, 1.10)	Other covariates: Folic acid use, gestational age at time of intake
	<u>PE:</u> Gestational HTN w/ proteinuria (≥2 dipsticks ≥2+, 1 catheter sample reading ≥1+, or ≥300mg in 24h urine) <u>Any HDP:</u> Gestational HTN or PE	Gestational Hypertension Logistic regression OR (95% CI)	
		Q1 vs. Q4 (Ref): 1.04 (0.67, 1.60) Q2 vs. Q4 (Ref): 0.91 (0.59, 1.42) Q3 vs. Q4 (Ref): 0.73 (0.46, 1.16) Trend: 0.96 (0.81, 1.12)	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Preeclampsia Logistic regression OR (95% CI)	
		Q1 vs. Q4 (Ref): 1.46 (0.70, 3.07) Q2 vs. Q4 (Ref): 0.57 (0.23, 1.46) Q3 vs. Q4 (Ref): 1.74 (0.85, 3.55) Trend: 0.94 (0.72, 1.23)	
Wiertsema, 2021 ²² cont.	Outcome and assessment methods: BP assessed at: Mid pregnancy (median 20.4 GW)	Excluding participants w/ pre-existent DM or GDM	Key confounders accounted for: Age, Race/ethnicity, SEP, Pre-
Analytic N =Mid-pregnancy: 3,262; Late-pregnancy: 3,285	and late pregnancy (median 30.2 GW)	Systolic BP	pregnancy BMI, Smoking, Parity,
	Systolic and diastolic BP measured by investigators after 5 min rest	Regression model β (95% CI), mm Hg	History of HDP, DM in current pregnancy
		<u>Mid pregnancy</u> Q1 vs. Q4 (Ref): 0.01 (-1.14, 1.15) Q2 vs. Q4 (Ref): 0.06 (-1.02, 1.13) Q3 vs. Q4 (Ref): -0.18 (-1.22, 0.87) Trend: -0.01 (-0.43, 0.41)	Other covariates: Alcohol use, Folic acid use, TEI, Gestational age at time of measurement
		Late pregnancy Q1 vs. Q4 (Ref): -0.26 (-1.38, 0.86) Q2 vs. Q4 (Ref): 0.38 (-0.67, 1.43) Q3 vs. Q4 (Ref): -0.34 (-1.37, 0.68) Trend: 0.10 (-0.31, 0.51)	
		Diastolic BP Regression model β (95% CI), mm Hg	
		<u>Mid pregnancy</u> Q1 vs. Q4 (Ref): 1.34 (0.44, 2.24), p<0.05 Q2 vs. Q4 (Ref): 0.82 (-0.02, 1.66) Q3 vs. Q4 (Ref): 0.30 (-0.52, 1.12) Trend: -0.47 (-0.80, -0.14), p<0.05	
		<u>Late pregnancy</u> Q1 vs. Q4 (Ref): 0.04 (-0.84, 0.93) Q2 vs. Q4 (Ref): -0.08 (-0.91, 0.75)	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Q3 vs. Q4 (Ref): -0.26 (-1.07, 0.55) Trend: -0.04 (-0.36, 0.28)	
Wiertsema, 2021 ²² cont. Analytic N =3,378	Outcome and assessment methods: PE, Gestational HTN, HDP assessed at: >20 GW Obtained from medical records. Gestational HTN: Systolic BP ≥140 mm Hg and/or diastolic BP ≥90 mm Hg in previously normotensive participants PE: Gestational HTN w/ proteinuria (≥2 dipsticks ≥2+, 1 catheter sample reading ≥1+, or ≥300mg in 24h urine) Any HDP: Gestational HTN or PE	Excluding participants w/ pre-existent DM or GDM Any HDP Logistic regression OR (95% CI) Q1 vs. Q4 (Ref): 1.15 (0.79, 1.69) Q2 vs. Q4 (Ref): 0.79 (0.53, 1.20) Q3 vs. Q4 (Ref): 0.96 (0.65, 1.43) Trend: 0.96 (0.83, 1.11) Gestational Hypertension Logistic regression OR (95% CI) Q1 vs. Q4 (Ref): 1.04 (0.67, 1.61) Q2 vs. Q4 (Ref): 0.87 (0.55, 1.37) Q3 vs. Q4 (Ref): 0.74 (0.46, 1.18) Trend: 0.96 (0.82, 1.14) Preeclampsia Logistic regression OR (95% CI) Q1 vs. Q4 (Ref): 1.50 (0.72, 3.16) Q2 vs. Q4 (Ref): 0.50 (0.19, 1.33) Q2 vs. Q4 (Ref): 0.50 (0.19, 1.33)	 Key confounders accounted for: Race/ethnicity, Pre-pregnancy BMI, Parity, History of HDP, DM in current pregnancy Other covariates: Folic acid use, Gestational age at time of intake Funding: Erasmus Medical Center, Rotterdam; Erasmus University Rotterdam; the Netherlands Organization for Health Research and Development; the Netherlands Organisation for Scientific Research (NWO); the Ministry of Health, Welfare and Sport; the European Union's Horizon 2020; the European Research Council; the Dutch Heart Foundation; the Dutch Diabetes Foundation Summary: Lower alignment with DASH was associated with higher diastolic blood pressure during middle pregnancy in all participants and participants without pre-existing DM or GDM. No other comparisons were
		Q3 vs. Q4 (Ref): 1.78 (0.87, 3.62) Trend: 0.93 (0.71, 1.22)	associated with diastolic blood pressure during middle or late pregnancy. Higher alignment with DASH was not associated with systolic blood pressure during middle or late pregnancy or risk of any hypertensive disorders of pregnancy, gestational hypertension, or preeclampsia.
Yee, 2020 ²³ PCS, United States, nuMoM2b Analytic N =8,259	HEI-2010 (quartiles of alignment) FFQ at: 6-13 GW	Hypertensive Disorders of Pregnancy Multivariable Poisson Regression RR (95% CI)	Key confounders accounted for: Age, Race/ethnicity, SEP, Pre- pregnancy BMI, Smoking, Parity,

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 Age (y): Q1: 23.9±5.2; Q4: 29.9±4.5, p<0.001 Race/Ethnicity (%): NHW: Q1: 47.8; Q4: 74.4; NHB: Q1: 24.0; Q4: 2.8; Hispanic: Q1: 20.3; Q4: 11.9; Other: Q1: 6.3; Q4: 4.0; Asian: Q1: 1.5; Q4: 6.9, p<0.001 SEP: Public insurance (%): Q1: 50.7; Q4: 8.4, p<0.001 Household income <200% FPL (%): Q1: 55.7; Q4: 12.4, p<0.001 ≥Some college (%): Q1: 82.0; Q4: 98.8, p<0.001 Pre-pregnancy BMI: Q1: 27.1±7.3; Q4: 24.9±4.9, p<0.001 History of HDP (%): 100% nulliparous Pregestational DM (%): Q1: 2.0; Q2: 1.7; Q3: 1.5; Q4: 0.8, 	 DP Description: Positive components: Total Vegetables; Greens and Beans; Total Fruit; Whole Fruit; Whole Grains; Seafood and Plant Proteins; Total Protein Foods; Dairy; Fatty Acids Negative components: Refined Grains; Empty Calories (i.e., energy from solid fats, alcohol, and added sugars); Sodium Outcome and assessment methods: HDP assessed at: >20 GW HDP: Antepartum gestational HTN, or antepartum, intrapartum, or postpartum (≤14d) PE, eclampsia, or superimposed PE Gestational HTN: New onset SBP ≥140mmHg or DBP ≥90mmHg twice ≥4h apart PE: Gestational HTN w proteinuria (≥0.3g protein in 24h urine) 	Q1 vs. Q4 (Ref): 1.13 (1.00, 1.29), p≥0.05 Q2 vs. Q4 (Ref): 1.10 (0.98, 1.24), p≥0.05 Q3 vs. Q4 (Ref): 1.05 (0.93, 1.19), p≥0.05	
 p=0.018 Current GDM (%): 4.2 Smoking (%): Ever used tobacco: Q1: 50.7; Q4: 36.6, p<0.001 	<u>Eclampsia:</u> New-onset tonic-clonic, focal, or multifocal seizures in the absence of other causative conditions		

Factor/Cluster Analysis

Brantsæter, 2009²

PCS, Norway, MoBa Analytic N=23,423

Analylic N=23,423

- Age (%): <20: 3.8; 30-39: 37.2; ≥40: 0.9
- Race/Ethnicity (%): White: >99
- SEP:
- Education (%): ≤10y: 4.0; 11-12y: 31.4; ≥16y: 20.5
- Pre-pregnancy BMI (%): 25-29: 19.9; ≥30: 8.5

Vegetable DP, Processed food DP, Potato and fish DP, & Cakes and sweets DP (tertiles of alignment) FFQ at: 20.7±3.7 GW

DP Descriptions:

- Vegetable DP: Higher in vegetables, cooking oil, olive oil, fruits and berries, rice, and chicken
- Processed food DP: Higher in processed meat products, white bread, French fries, salty snacks, and sugar-sweetened drinks and high negative

Preeclampsia

Multiple Logistic Regression OR (95% CI)

Vegetable DP

T2 vs. T1 (Ref): 0.84 (0.73, 0.97) T3 vs. T1 (Ref): 0.72 (0.62, 0.85)

Processed food DP

T2 vs. T1 (Ref): 1.06 (0.91, 1.23) T3 vs. T1 (Ref): 1.21 (1.03, 1.41)

Key confounders accounted for: Age, Race/ethnicity, SEP, Prepregnancy BMI, Smoking, History of HDP

Other covariates: Other DP, Height, TEI, Supplement use

Funding: Norwegian Ministry of Health; Norwegian Ministry of Education and Research; NIH/NIEHS; NIH/NINDS; Norwegian Research Council/FUGE;

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 History of HTN (%): 0.9 Smoking (%): Occasional: 3.2; Daily: 5.4 	 loadings on oily fish, high-fiber breakfast cereals, and lean fish Potato and fish DP: Higher in cooked potatoes, processed fish, lean fish, fish spread and shellfish, and margarine Cakes and sweets DP: Higher in cakes, waffles and pancakes, buns, ice cream, sweet biscuits, sweets, and chocolate Outcome and assessment methods: PE assessed at: >20 GW <u>PE:</u> Reported preeclampsia (>140 mmHg/90 mmHg BP w/ proteinuria >1+ dipstick on ≥2 occasions), HELLP syndrome (hemolysis, elevated liver enzymes, and low platelet count), eclampsia, early preeclampsia (<34 GW), mild preeclampsia, and severe preeclampsia on the birth notification form 	Potato and fish DP T2 vs. T1 (Ref): 0.99 (0.86, 1.15) T3 vs. T1 (Ref): 1.00 (0.84, 1.18) Cakes and sweets DP T2 vs. T1 (Ref): 1.00 (0.86, 1.15) T3 vs. T1 (Ref): 0.90 (0.76, 1.06)	European Commission, 6th Framework Programme, Priority 5 on Food Quality and Safety Summary: Greater alignment with the Vegetable DP was associated with reduced risk of preeclampsia. Greater alignment with the Processed DP was associated with greater risk of preeclampsia. Greater alignment with the Potato and fish DP and the Cakes and sweets DP was not associated with risk of preeclampsia.
 de Seymour, 2022⁴ PCS, China, CLIMB Analytic N =962 Age (y): Median (IQR): 28 (26, 31) Race/Ethnicity (%): Han ethnicity: 97.9 SEP: Tertiary level education (%): 63.1 Household income (%): <7,000 yuan/mo: 19.5; >10,000 yuan/mo: 19.5; >10,000 yuan/mo: 44.5 Baseline BMI: Median (IQR): 21.0 (19.4, 22.9) Current GDM (%): 27.7 Previous pregnancy complication resulting in delivery <32 GW (%): 0.0 	 FPV DP & PSO DP (continuous alignment) FFQ at: 11-14 GW DP Description: Fish, poultry and vegetables (FPV)-based DP: Higher in fish; poultry; legumes and bean products; green leafy vegetables; root vegetables; other vegetables; seafood; fruits; eggs; organ meats; beverages; bread; dairy; soup; nuts Pasta, sweetened beverages, oils and condiments (PSO)-based DP: Higher in pasta; sweetened beverages; oils and condiments; fast food Ductome and assessment methods: PE assessed at: >20 GW PE: Systolic BP >140 mmHg and/or diastolic BP >90 mmHg on at least two occasions 4 hr apart w/ significant proteinuria (spot urine protein/creatinine >30 mg/mmol or >300 mg/d or ≥1g/L ["2 +"] on dipstick testing) 	Preeclampsia Binomial logistic regression OR (95% Cl) <u>FPV-based DP:</u> 1.106 (0.665, 1.838), p=0.689 <u>PSO-based DP:</u> 0.909 (0.499, 1.654), p=0.755	 Key confounders accounted for: Age, Race/ethnicity, SEP, Pre- pregnancy BMI, History of HDP Other covariates: Offspring sex, TEI, CLIMB treatment group, Other DP Funding: Joint Health Research Council New Zealand–National Science Foundation of China; Lottery Health New Zealand; Fonterra Co-operative Group Ltd., New Zealand; New Zealand Ministry for Primary Industries Summary: Alignment with the FPV- based DP and PSO-based DP was not associated with risk of preeclampsia.

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 Flynn, 2016⁸ PCS, United Kingdom, UPBEAT Analytic N =984 Age (y): 30.5±5.5 Race/Ethnicity (%): White: 64; Black: 23; Asian: 8; Other: 5 SEP: Education (%): None/Secondary: 20; Degree/Higher degree: 40; Vocational qualification: 24 Index of multiple deprivation (%): 1 (least deprived): 4; 5 (most deprived): 43 Pre-pregnancy BMI: 36.2±4.7 (%): ≥30: 100 Pre-pregnancy HTN: 0.0 Pre-pregnancy DM: 0.0 	 Fruit & Veg DP & Snacks DP (quartiles of alignment) FFQ at: 15-<19 GW DP Description: Fruit & Veg DP: High intake of bananas; citrus fruit; dried fruit; fresh fruit; green vegetables; pulses; root vegetables; salad vegetables; tropical fruit; yoghurt Snacks DP: High intake of biscuits and cookies; cakes and pastries; chocolate; full fat cheese; sweets Outcome and assessment methods: PE assessed at: NR PE: Systolic BP ≥140 mm Hg or diastolic BP ≥90 mm Hg on ≥2 occasions ≥4h apart, w/ proteinuria ≥300 mg/24h or spot urine protein:creatinine ratio ≥30 mg/mmol creatinine, or urine dipstick protein ≥2+ 	Preeclampsia Multiple logistic regression OR (95% CI) Fruit & Veg DP Q2 vs. Q1 (Ref): 0.88 (0.36, 2.13) Q3 vs. Q1 (Ref): 0.58 (0.22, 1.54) Q4 vs. Q1 (Ref): 0.61 (0.23, 1.66) p for trend=0.641 Snacks DP Q2 vs. Q1 (Ref): 1.14 (0.40, 3.23) Q3 vs. Q1 (Ref): 1.22 (0.43, 3.46) p for trend=0.924	Key confounders accounted for: Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Parity, DM in current pregnancy Other covariates: Treatment allocation
Flynn, 2016 ⁸ cont.	African/Caribbean DP & Processed DP (quartiles of alignment)	Preeclampsia Multiple logistic regression	Key confounders accounted for: Age, Physical activity, Race/ethnicity,

FFQ at: 15-<19 GW

DP Description:

- African/Caribbean DP: High intake of red meat; cassava; white meat; rice including pilau, fried or jollof rice; plantain; fish
- Processed DP: High intake of chocolate; crisps; green vegetables; potatoes; processed meat and meat products; root vegetables; squash and fizzy drinks; sugar free squash and fizzy drinks; chips

Multiple logistic regression OR (95% CI)

African/Caribbean DP

Q2 vs. Q1 (Ref): 0.79 (0.35, 1.80) Q3 vs. Q1 (Ref): 0.42 (0.15, 1.14) Q4 vs. Q1 (Ref): 0.42 (0.12, 1.45) p for trend=0.298

Processed DP

Q2 vs. Q1 (Ref): 0.86 (0.32, 2.33) Q3 vs. Q1 (Ref): 0.51 (0.16, 1.62) Q4 vs. Q1 (Ref): 1.40 (0.55, 3.54) p for trend=0.291 Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Parity,

Other covariates: Treatment allocation

Funding: NIHR UK; Scottish Government Health Directorates; Guys and St. Thomas' Charity; Tommy's Charity; the European Union's Seventh Framework Programme

Summary: Among participants with pre-pregnancy BMI ≥30, alignment with the Fruit & Veg DP, African/Caribbean DP, Processed DP, and Snacks DP was not associated with risk of preeclampsia.

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
Hajianfar, 2018 ⁹ PCS, Iran (Islamic Rep. of), Isfahan University of Medical Sciences	Healthy DP, Western DP, & Traditional DP (quartiles of alignment) FFQ at: 8-16 GW	Preeclampsia Logistic regression, p-values from Mantel– Haenszel extension chi-squared test OR (95% CI)	Key confounders accounted for: Age, Physical activity, SEP, Pre- pregnancy BMI, DM in current pregnancy
Analytic N=812	DP Description:	Healthy DP	Other covariates: TEI
 Age (y): 20-40 SEP: Occupation (%): Healthy: 	 Healthy DP: Higher intake of green vegetables, leafy vegetables, colored vegetables, fruits, low fat dairy, poultry, bulky vegetables, red meat, citrus, nuts, fish, olive, marinades, sweet fruit, egg, and unsaturated 	Q2 vs. Q1 (Ref): 0.92 (0.46, 1.82), p≥0.05 Q3 vs. Q1 (Ref): 0.44 (0.21, 0.92), p<0.05 Q4 vs. Q1 (Ref): 0.49 (0.24, 1), p≥0.05	Funding: NR
Homemaker: Q1: 25.3; Q4: 22.2; Employed: Q1: 21.4;	fat	p=0.05	Summary: Greater alignment with the Healthy DP was marginally associated
Q4: 38.1; Teacher: Q1: 28.9; Q4: 28.9, p=0.01; Western: p=0.4; Traditional: p=0.3 • Education (%): Traditional: Undergraduate: Q1: 21.3; Q4: 23; Graduate: Q1: 28.2; Q4: 26.4, p=0.03; Healthy: p=0.9; Western: p=0.4	• Western DP: Higher intake of processed meats, fruits, fruits juice, citrus, nuts, fish, desserts and sweets, sugar, saturated fat, sweet fruit (melon, persimmon, date, fig, grapes, raisins, berries that have high glycemic index), potato, legumes, coffee, egg, pizza, high fat dairy, whole grain, and soft drinks	<u>Western DP</u> Q2 vs. Q1 (Ref): 3.25 (1.51, 6.99), p<0.05 Q3 vs. Q1 (Ref): 2.02 (0.97. 4.20), p≥0.05 Q4 vs. Q1 (Ref): 2.08 (1, 4.36), p≥0.05 p=0.02 Traditional DP	with reduced risk of preeclampsia. Greater alignment with the Western DP was associated with higher risk of preeclampsia. Alignment with the Traditional DP was not associated with risk of preeclampsia.
 SES (%): Western: Low: Q1: 32.8; Q4: 14.1; High: Q1: 24.3; Q4: 28.5, p=0.02; Traditional: Low: Q1: 12.5; 	 Traditional DP: Higher intake of refined grains, colored vegetables, olive, sugar, salt, spices, unsaturated fat, garlic, onion, and tea 	Q2 vs. Q1 (Ref): 1.27 (0.64, 2.55), p≥0.05 Q3 vs. Q1 (Ref): 1.41 (0.68, 2.93), p≥0.05 Q4 vs. Q1 (Ref): 1.25 (0.63, 2.49), p≥0.05 p=0.8	High alignment with the Western DP was associated with reduced risk of high diastolic blood pressure when compared to low alignment, but the
Q4: 20.3; High: Q1: 27.2; Q4: 30.3, p<0.001; Healthy: p=0.5 • Pre-pregnancy BMI (%): ≥25:	Outcome and assessment methods: PE and Gestational HTN assessed at: ≥20 GW	High Diastolic BP Logistic regression, p-values from Mantel–	overall association across quartiles was not significant. Alignment with the Healthy DP or Traditional DP was not
 Pre-pregnancy BMI (%): 225. Healthy: Q1: 24.2; Q4: 26.1; Western: Q1: 24.7; Q4: 23.6; 	<u>Gestational HTN:</u> SBP ≥140 mmHg or DBP ≥90 mmHg on ≥2 occasions ≥4-6h apart	Haenszel extension chi-squared test OR (95% CI)	associated with risk of high diastolic blood pressure.
Traditional: Q1: 26.1; Q4: 25.6	<u>PE:</u> Gestational HTN with proteinuria (≥300 mg/L in 24h urine sample)	<u>Healthy DP</u> Q2 vs. Q1 (Ref): 0.49 (0.13, 1.78), p≥0.05 Q3 vs. Q1 (Ref): 0.68 (0.2, 2.2), p≥0.05 Q4 vs. Q1 (Ref): 0.22 (0.04, 1.14), p≥0.05 p=0.31	Greater alignment with the Western DP was associated with reduced risk of high systolic blood pressure. Alignment with the Healthy DP or Traditional DP was not associated with risk of high systolic blood pressure.
		<u>Western DP</u> Q2 vs. Q1 (Ref): 1.03 (0.33, 3.2), p≥0.05 Q3 vs. Q1 (Ref): 0.44 (0.11, 1.63), p≥0.05 Q4 vs. Q1 (Ref): 0.1 (0. 01, 0.95), p<0.05 p=0.13	

<u>Traditional DP</u> Q2 vs. Q1 (Ref): 1.44 (0.41, 5.09), p≥0.05

nesr.usda.gov | 61

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Q3 vs. Q1 (Ref): 0.57 (0.13, 2.38), p≥0.05 Q4 vs. Q1 (Ref): 0.86 (0.21, 3.45), p≥0.05 p=0.58	
		High Systolic BP Logistic regression, p-values from Mantel– Haenszel extension chi-squared test OR (95% CI)	
		<u>Healthy DP</u> Q2 vs. Q1 (Ref): 0.83 (0.37, 1.86), p≥0.05 Q3 vs. Q1 (Ref): 0.81 (0.36, 1.80), p≥0.05 Q4 vs. Q1 (Ref): 0.58 (0.24, 1.40), p≥0.05 p=0.7	
		<u>Western DP</u> Q2 vs. Q1 (Ref): 0.63 (0.3, 1.3), p≥0.05 Q3 vs. Q1 (Ref): 0.36 (0.15, 0.81), p<0.05 Q4 vs. Q1 (Ref): 0.13 (0.04, 0.42), p<0.05 p=0.002	
		<u>Traditional DP</u> Q2 vs. Q1 (Ref): 1.03 (0.44, 2.36), p≥0.05 Q3 vs. Q1 (Ref): 0.74 (0.31, 1.76), p≥0.05 Q4 vs. Q1 (Ref): 1.07 (0.47, 2.44), p≥0.05 p=0.83	
Hu, 2022 ¹²	Traditional DP-TFD, Wheaten food-coarse cereals	Diastolic BP	Key confounders accounted for:
PCS, China, BISCS Analytic N =1,092	DP-TFD, Sweet food-seafood DP-TFD, Fried food- protein-rich DP-TFD, Fish-seafood DP-FFQ, Protein-rich DP-FFQ, & Vegetable-fruit-rice DP-	Linear regression β (95% CI)	Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking, Parity, History of HDP, DM in current
 Age (%): <25: 5.9; >35: 15.6 Race/Ethnicity (%): Chinese Han: 83.4; Other: 16.6 	FFQ (quartiles of alignment) 3d food diaries (TFD) at: 22±1.2 to 24±1.2 GW; FFQ at: 22±1.2 w	<u>Traditional DP-TFD</u> Q2 vs Q1 (Ref): 0.05 (-1.01, 1.11) Q3 vs Q1 (Ref): 0.21 (-0.94, 1.35)	other covariates: TEI; Other DP from
• SEP:		Q4 vs Q1 (Ref): 0.71 (-0.61, 2.02)	same assessment tool (TFD or FFQ);
 Education (%): ≤High school: 24.0 	DP Descriptions:	p for trend=0.249	Funding: None
 Household income (%): <50K CNY/y: 53.6 Pre-pregnancy BMI (%): ≥24.0: 26.5 History of HTN (%): 0.3 	 Traditional DP-TFD: Higher in tubers; vegetables; fruits; red meat; coarse cereals; rice; nuts 	Wheaten food-coarse cereals DP-TFD Q2 vs Q1 (Ref): 0.37 (-0.65, 1.40) Q3 vs Q1 (Ref): 0.28 (-0.78, 1.34) Q4 vs Q1 (Ref): -0.12 (-1.18, 0.93) p for trend=0.847	Summary: Greater alignment with the Sweet food-seafood-TFD DP was associated with lower diastolic BP (DBP), systolic BP (SBP), and mean

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 History of DM (%): 0.2 Current GDM (%): 22.3 Smoking (%): 0.6 	 Wheaten food-coarse cereals DP-TFD: Higher intakes of wheat flour and products; coarse cereals; beans and bean products; lower intakes of eggs; rice 	<u>Sweet food-seafood DP-TFD</u> Q2 vs Q1 (Ref): -0.09 (-1.13, 0.95)	arterial pressure (MAP). Greater alignment with the Wheaten food- coarse cereal-TFD DP neared
	 Sweet food-seafood DP-TFD: Higher intakes of pastries and candies; sweet beverages; shrimps, crabs, and mussels; fruits 	Q3 vs Q1 (Ref): 0.04 (-1.01, 1.09) Q4 vs Q1 (Ref): -1.04 (-2.10, 0.02) p for trend=0.031	significance for an association with lower SBP, and the direction of effect was suggestive for DBP and MAP,
	 Fried food-protein-rich DP-TFD: Higher intakes of fried foods; beans and bean products; dairy products 	<u>Fried food-protein-rich DP-TFD</u> Q2 vs Q1 (Ref): 0.12 (-0.92, 1.16)	despite statistical non-significance. Greater alignment with the Fish- seafood-FFQ DP neared significance
	 Fish-seafood DP-FFQ: Higher intakes of shrimps, crabs and mussels; marine fish; freshwater fish; organ meat; seaweed; poultry 	Q3 vs Q1 (Ref): -0.12 (-1.18, 0.94) Q4 vs Q1 (Ref): 0.22 (-0.87, 1.31) p for trend=0.665	for an association with higher DBP, and the direction of effect was suggestive for MAP, but not SBP. There were no
	 Protein-rich DP-FFQ: Higher intakes of dairy products; milk; eggs; beans and bean products; nuts; pastries and candies 	<u>Fish-seafood DP-FFQ</u> Q2 vs Q1 (Ref): -1.23 (-2.33, 0.14) Q3 vs Q1 (Ref): 0.07 (-1.07, 1.22)	associations between the Vegetable- fruit-rice-FFQ DP, the Traditional-TFD DP, Protein-rich-FFQ DP, or Fried food- protein-rich-TFD DP and all BP
	 Vegetable–fruit–rice DP-FFQ: Higher intakes of vegetables; fruits; rice; nuts 	Q4 vs Q1 (Ref): 0.52 (-0.72, 1.77) p for trend=0.057	measures.
	Outcome and assessment methods: BP assessed at: Each antenatal visit (median 7 times)	<u>Protein-rich DP-FFQ</u> Q2 vs Q1 (Ref): 0.55 (-0.54, 1.64)	
	BP measured after 5 min rest. Systolic BP and Diastolic BP calculated as average of 3 measurements.	Q3 vs Q1 (Ref): 0.53 (-0.54, 1.04) Q3 vs Q1 (Ref): 0.63 (-0.54, 1.81) Q4 vs Q1 (Ref): 0.17 (-1.14, 1.48) p for trend=0.869	
	MAP calculated as 1/3 SBP + 2/3 DBP.	Vegetable-fruit-rice DP-FFQ Q2 vs Q1 (Ref): 0.05 (-1.00, 1.11) Q3 vs Q1 (Ref): -0.45 (-1.52, 0.62) Q4 vs Q1 (Ref): -0.48 (-1.60, 0.63) p for trend=0.331	
		Systolic BP Linear regression β (95% CI)	
		<u>Traditional DP-TFD</u> Q2 vs Q1 (Ref): -0.25 (-1.87, 1.36) Q3 vs Q1 (Ref): 0.34 (-1.41, 2.08) Q4 vs Q1 (Ref): 0.93 (-1.06, 2.93) p for trend=0.218	
		Wheaten food-coarse cereals DP-TFD	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Q2 vs Q1 (Ref): -0.74 (-2.30, 0.82) Q3 vs Q1 (Ref): -1.21 (-2.82, 0.41) Q4 vs Q1 (Ref): -1.44 (-3.05, 0.17) p for trend=0.061	
		<u>Sweet food-seafood DP-TFD</u> Q2 vs Q1 (Ref): -1.53 (-3.11, 0.05) Q3 vs Q1 (Ref): -0.17 (-1.77, 1.43) Q4 vs Q1 (Ref): -2.57 (-4.19, -0.96) p for trend=0.005	
		Fried food-protein-rich DP-TFD Q2 vs Q1 (Ref): -0.73 (-2.32, 0.85) Q3 vs Q1 (Ref): 0.05 (-1.67, 1.57) Q4 vs Q1 (Ref): 0.81 (-0.85, 2.47) p for trend=0.141	
		<u>Fish-seafood DP-FFQ</u> Q2 vs Q1 (Ref): -2.17 (-3.84, -0.50) Q3 vs Q1 (Ref): 0.39 (-1.35, 2.14) Q4 vs Q1 (Ref): -0.60 (-2.49, 1.30) p for trend=0.693	
		Protein-rich DP-FFQ Q2 vs Q1 (Ref): -0.18 (-1.84, 1.48) Q3 vs Q1 (Ref): 1.47 (-0.33, 3.26) Q4 vs Q1 (Ref): 1.03 (-0.97, 3.03) p for trend=0.214	
		Vegetable-fruit-rice DP-FFQ Q2 vs Q1 (Ref): 0.75 (-0.85, 2.36) Q3 vs Q1 (Ref): -0.78 (-2.42, 0.86) Q4 vs Q1 (Ref): -0.41 (-2.11, 1.29) p for trend=0.345	
		Mean Arterial Pressure Linear regression β (95% CI)	
		<u>Traditional DP-TFD</u> Q2 vs Q1 (Ref): -0.11 (-1.28, 1.05) Q3 vs Q1 (Ref): 0.21 (-1.04, 1.47)	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Q4 vs Q1 (Ref): 0.71 (-0.72, 2.15) p for trend=0.232	
		Wheaten food-coarse cereals DP-TFD Q2 vs Q1 (Ref): 0.03 (-1.09, 1.15) Q3 vs Q1 (Ref): -0.25 (-1.41, 0.91) Q4 vs Q1 (Ref): -0.57 (-1.73, 0.59) p for trend=0.306	
		<u>Sweet food-seafood DP-TFD</u> Q2 vs Q1 (Ref): -0.57 (-1.70, 0.57) Q3 vs Q1 (Ref): -0.05 (-1.20, 1.10) Q4 vs Q1 (Ref): -1.54 (-2.70, -0.38) p for trend=0.009	
		Fried food-protein-rich DP-TFD Q2 vs Q1 (Ref): -0.13 (-1.26, 1.01) Q3 vs Q1 (Ref): 0.01 (-1.15, 1.18) Q4 vs Q1 (Ref): 0.51 (-0.68, 1.71) p for trend=0.265	
		<u>Fish-seafood DP-FFQ</u> Q2 vs Q1 (Ref): -1.44 (-2.64, -0.24) Q3 vs Q1 (Ref): 0.18 (-1.07, 1.43) Q4 vs Q1 (Ref): 0.20 (-1.16, 1.56) p for trend=0.176	
		Protein-rich DP-FFQ Q2 vs Q1 (Ref): 0.32 (-0.88, 1.51) Q3 vs Q1 (Ref): 0.97 (-0.32, 2.26) Q4 vs Q1 (Ref): 0.56 (-0.88, 1.99) p for trend=0.522	
		Vegetable-fruit-rice DP-FFQ Q2 vs Q1 (Ref): 0.12 (-1.03, 1.28) Q3 vs Q1 (Ref): -0.65 (-1.82, 0.53) Q4 vs Q1 (Ref): -0.55 (-1.77, 0.67) p for trend= 0.259	
		Further adjustment for GWG or GDM did not substantively change the results	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
Hu, 2022 ¹² cont.	Outcome and assessment methods: Gestational HTN assessed at: >20 GW <u>Gestational HTN:</u> Systolic BP >140 mmHg or Diastolic BP >90mmHg (≥2 times, ≥4h apart)	Gestational Hypertension Logistic regression OR (95% CI) <u>Traditional DP-TFD</u> Q2 vs Q1 (Ref): 0.79 (0.48, 1.29) Q3 vs Q1 (Ref): 0.60 (0.35, 1.03) Q4 vs Q1 (Ref): 0.74 (0.42, 1.31) p for trend=0.347	 Key confounders accounted for: Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking, Parity, Other covariates: Other DPs from same assessment tool (TFD or FFQ), total energy intake per day, and history of diabetes
		DP*pre-pregnancy BMI p for interaction ≥0.05	Funding: None
		Wheaten food-coarse cereals DP-TFD Q2 vs Q1 (Ref): 0.68 (0.41, 1.10) Q3 vs Q1 (Ref): 0.53 (0.31, 0.90) Q4 vs Q1 (Ref): 0.71 (0.43, 1.16) p for trend=0.122	Summary: Greater alignment with the Fried food-protein-rich-TFD DP neared significance for an association with higher risk of gestational hypertension. There was a statistically significant interaction between the Sweet food-
		DP*pre-pregnancy BMI p for interaction ≥0.05	seafood-TFD DP and Fish-seafood- FFQ DP and pre-pregnancy BMI:
		Sweet food-seafood DP-TFD All participants Q2 vs Q1 (Ref): 0.79 (0.48, 1.33) Q3 vs Q1 (Ref): 0.93 (0.57, 1.54) Q4 vs Q1 (Ref): 0.80 (0.48, 1.35) p for trend=0.474	greater alignment to these DP was associated with lower risk of gestation hypertension among those with BMI ≥24, but not among those with BMI <2 Alignment with the Traditional-TFD DF Wheaten food-coarse cereals-TFD DF Protein-rich-FFQ DP, and Vegetable- fruit-rice-FFQ DP was not associated
		Pre-pregnancy BMI ≥24 Q2 vs. Q1 (Ref): 0.49, p≥0.05 Q3 vs. Q1 (Ref): 0.69, p≥0.05 Q4 vs. Q1 (Ref): 0.30 (0.16, 1.00)	with risk of gestational hypertension.
		<i>Pre-pregnancy BMI <24</i> Q2 vs. Q1 (Ref): 1.08, p≥0.05 Q3 vs. Q1 (Ref): 1.22, p≥0.05 Q4 vs. Q1 (Ref): 1.36 (0.70, 2.66)	
		DP*pre-pregnancy BMI p for interaction=0.045	
		Fried food-protein-rich DP-TFD	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Q2 vs Q1 (Ref): 0.86 (0.51, 1.46) Q3 vs Q1 (Ref): 0.98 (0.58, 1.65) Q4 vs Q1 (Ref): 1.51 (0.91, 2.51) p for trend=0.052	
		DP*pre-pregnancy BMI p for interaction ≥0.05	
		<u>Fish-seafood DP-FFQ</u> <i>All participants</i> Q2 vs Q1 (Ref): 0.74 (0.42, 1.29) Q3 vs Q1 (Ref): 1.07 (0.62, 1.85) Q4 vs Q1 (Ref): 1.04 (0.57, 1.88) p for trend=0.567	
		<i>Pre-pregnancy BMI</i> ≥24 Q2 vs. Q1 (Ref): 0.28, p<0.05 Q3 vs. Q1 (Ref): 0.40 (0.16, 0.99) Q4 vs. Q1 (Ref): 0.41, p≥0.05	
		<i>Pre-pregnancy BMI</i> <24 Q2 vs. Q1 (Ref): 1.57, p≥0.05 Q3 vs. Q1 (Ref): 2.12 (0.98, 4.59) Q4 vs. Q1 (Ref): 2.20, p≥0.05	
		DP*pre-pregnancy BMI p for interaction=0.007	
		Protein-rich DP-FFQ Q2 vs Q1 (Ref): 0.89 (0.52, 1.55) Q3 vs Q1 (Ref): 1.35 (0.76, 2.39) Q4 vs Q1 (Ref): 1.14 (0.60, 2.17) p for trend=0.552	
		DP*pre-pregnancy BMI p for interaction ≥0.05	
		Vegetable-fruit-rice DP-FFQ Q2 vs Q1 (Ref): 0.89 (0.53, 1.48) Q3 vs Q1 (Ref): 0.93 (0.55, 1.57) Q4 vs Q1 (Ref): 0.84 (0.48, 1.46) p for trend=0.643	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		DP*pre-pregnancy BMI p for interaction ≥0.05	
		Further adjustment for GWG or GDM did not change the results in general	
lkem, 2019 ¹³	Western DP, Vegetable/Prudent DP, Seafood DP,	Gestational Hypertension (Analytic	Key confounders accounted for:
PCS, Denmark, DNBC	Nordic DP, Rice/Pasta/Poultry DP, Sweets DP, & Alcohol DP (quintiles of alignment)	N=39,362)	Age, Physical activity, SEP, Pre- pregnancy BMI, Smoking, Parity,
Analytic N =55,139	FFQ at: 25 GW	Multivariable logistic regression OR (95% CI)	History of HDP
• Age (y):	DP Descriptions:	Western DP	Other covariates: TEI, Height
 GHTN: 30±4.3; No GHTN: 30.4±4.2, p<0.0001 PE: 29.8±4.5; No PE: 30.3±4.3, p<0.0001 Severe PE: 30.0±4.4; No Severe PE: 30.3±4.3, p=0.06 Sociodemographic status of pair (%): GHTN: High: 18.3; Low: 41.8; No GHTN: High: 22.8; Low: 37.7, p<0.0001 PE: High: 18.1; Low: 41.4; No PE: High: 22.6; Low: 37.7, p<0.001 Pre-pregnancy BMI: GHTN: 25.4±5.1; No GHTN: 23.3±4.0, p<0.0001 PE: 25.8±5.4; No PE: 23.5±4.1, p<0.0001 Severe PE: 25.1±5.0; No 	 Western DP: Higher in pork; beef and veal; mixed meat; cold meat; egg; potatoes; French fries; dressing sauce; white bread; cold fish; butter; margarine Vegetable/Prudent DP: Higher in legumes; root vegetables; tomato; salad; corn; mushroom; onion; cabbage; other vegetables; other fruit Seafood DP: Higher in lean fish; oily fish; shellfish; cold fish; smoked fish; oil; beef and veal; lamb; egg; onion; tomato; Asian vegetables; other vegetables; fermented milk; yogurt Nordic DP: Higher in dark bread; Nordic fruit; hard cheese; banana; dried fruit; sweet spread; cold meat Rice/Pasta/Poultry DP: Higher in rice; pasta; poultry Sweets DP: Higher in chocolate; dairy dessert; candy; sweet spread; sugar cakes; white bread; margarine; snacks; French fries 	All participants Q5 vs. Q1 (Ref): 1.18 (1.05, 1.33) Q4 vs. Q1 (Ref): 1.08 (0.97, 1.20) Q3 vs. Q1 (Ref): 1.16 (1.05, 1.29) Q2 vs. Q1 (Ref): 1.16 (1.05, 1.29) Q2 vs. Q1 (Ref): 1.13 (1.03, 1.25) p for trend=0.03 Pre-pregnancy BMI <18.5	 Funding: School of Public Health, Imperial College London; Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland; Danish Diabetes Academy, Novo Nordisk Foundation; March of Dimes Foundation; the Health Foundation; the Heart Foundation; Innovation Fund Denmark, Centre for Fetal Programming Summary: Greater alignment with the Western DP was associated with higher risk of gestational hypertension and preeclampsia in all participants, participants with pre-pregnancy BMI 18.5-24.9, and participants with female sex fetuses, but not in participants with
Severe PE: 23.5±4.2, p<0.0001 • History of HTN (%):	 Alcohol DP: Higher in liquor; wine; beer; soybean; root vegetables; berries 	<i>Pre-pregnancy BMI</i> ≥25 Q5 vs. Q1 (Ref): 0.97 (0.80, 1.18)	pre-pregnancy BMI <18.5 or ≥25 or participants with male sex fetuses. Additionally, greater alignment with the
 GHTN: 13.3; No GHTN: 2.6, p<0.0001 PE: 11.4; No PE: 3.7, p<0.0001 Severe PE: 10.7; No Severe 	Outcome and assessment methods: Total Gestational HTN and PE assessed at: >20 GW; Mid Gestational HTN assessed at: 20-30 GW; Late Gestational HTN assessed at: >30 GW	Q4 vs. Q1 (Ref): 0.99 (0.83, 1.18) Q3 vs. Q1 (Ref): 1.12 (0.94, 1.33) Q2 vs. Q1 (Ref): 1.07 (0.91, 1.27) p for trend=0.39	Western DP was associated with higher risk of late gestational hypertension, but not mid gestational hypertension or severe preeclampsia.
PE: 3.9, p<0.0001 • Current GDM (%): ~1.0 • Smoking (%):	Gestational HTN self-reported. Total and severe PE defined based on doctor diagnosis	<i>Male Fetal Sex</i> Q5 vs. Q1 (Ref): 1.10 (0.93, 1.29) Q4 vs. Q1 (Ref): 1.15 (1.00, 1.33)	Greater alignment with the Seafood DP was associated with lower risk of
	<u>Gestational HTN:</u> New-onset HTN (≥140/90 mmHg)	Q3 vs. Q1 (Ref): 1.06 (0.92, 1.22)	gestational hypertension in all participants, participants with pre-

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
 ○ GHTN: 25.8; No GHTN: 24.7, p=0.02 ○ PE: 20.2; No PE: 25.1, 	w/o proteinuria <u>Total PE:</u> Elevated BP (≥140/90 mmHg) w/ proteinuria	Q2 vs. Q1 (Ref): 1.13 (0.98, 1.29) p for trend=0.30 <i>Female Fetal Sex</i>	pregnancy BMI 18.5-24.9, and participants with both male and female (trend neared significance) fetuses, but
p=0.00 ∘ Severe PE: 16.7; No Severe PE: 25.0, p=0.02	$(\geq 300 \text{ mg}/24 \text{ h or } 1 + \text{ urine dipstick})$	Q5 vs. Q1 (Ref): 1.28 (1.08, 1.51) Q4 vs. Q1 (Ref): 1.01 (0.86, 1.18) Q3 vs. Q1 (Ref): 1.28 (1.11, 1.48) Q2 vs. Q1 (Ref): 1.14 (0.99, 1.32) p for trend=0.04 Seafood DP All participants Q5 vs. Q1 (Ref): 0.86 (0.77, 0.95) Q4 vs. Q1 (Ref): 0.91 (0.82, 1.00) Q3 vs. Q1 (Ref): 0.96 (0.87, 1.05) Q2 vs. Q1 (Ref): 1.01 (0.92, 1.10) p for trend<0.01	not in participants with pre-pregnancy BMI <18.5 or ≥25. Greater alignment with the seafood DP was associated with lower risk of preeclampsia in all participants, but the association was not significant in any subgroup analysis. Alignment with the Seafood DP was not associated with risk of severe preeclampsia. Greater alignment with the Rice/Pasta/Poultry DP was associated with higher risk of gestational hypertension. No other associations between the Rice/Pasta/Poultry DP, Vegetable/Prudent DP, Nordic DP, Sweets DP, or Alcohol DP and risk of gestational hypertension, preeclampsia, or severe preeclampsia were
		Pre-pregnancy BMI 18.5-24.9 Q5 vs. Q1 (Ref): 0.86 (0.76, 0.97) Q4 vs. Q1 (Ref): 0.94 (0.84, 1.01) Q3 vs. Q1 (Ref): 0.91 (0.81, 1.03) Q2 vs. Q1 (Ref): 0.96 (0.85, 1.01) p for trend=0.02	significant.
		<i>Pre-pregnancy BMI</i> ≥25 Q5 vs. Q1 (Ref): 0.97 (0.82, 1.14) Q4 vs. Q1 (Ref): 0.96 (0.83, 1.11) Q3 vs. Q1 (Ref): 1.11 (0.97, 1.26) Q2 vs. Q1 (Ref): 1.10 (0.97, 1.24) p for trend=0.50	
		Male Fetal Sex Q5 vs. Q1 (Ref): 0.72 (0.63, 0.82) Q4 vs. Q1 (Ref): 0.87 (0.78, 0.98) Q3 vs. Q1 (Ref): 0.95 (0.85, 1.07)	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Q2 vs. Q1 (Ref): 1.00 (0.89, 1.11) p for trend=0.01	
		Female Fetal Sex Q5 vs. Q1 (Ref): 0.78 (0.68, 0.89) Q4 vs. Q1 (Ref): 0.81 (0.71, 0.91) Q3 vs. Q1 (Ref): 0.87 (0.77, 0.98) Q2 vs. Q1 (Ref): 0.94 (0.84, 1.06) p for trend=0.08	
		<u>Vegetable/Prudent DP</u> Q5 vs. Q1 (Ref): 1.05 (0.96, 1.16)	
		<u>Nordic DP</u> Q5 vs. Q1 (Ref): 0.93 (0.83, 1.04)	
		<u>Rice/Pasta/Poultry DP</u> Q5 vs. Q1 (Ref): 1.12 (1.02, 1.24), p<0.05	
		<u>Sweets DP</u> Q5 vs. Q1 (Ref): 1.05 (0.94, 1.16)	
		<u>Alcohol DP</u> Q5 vs. Q1 (Ref): 0.97 (0.88, 1.07)	
		Mid Gestational Hypertension (Analytic N=47,538)	
		Multivariable logistic regression OR (95% CI)	
		<u>Western DP</u> Q5 vs. Q1 (Ref): 1.12 (0.94, 1.32) Q4 vs. Q1 (Ref): 1.05 (0.90, 1.22) Q3 vs. Q1 (Ref): 1.00 (0.86, 1.16) Q2 vs. Q1 (Ref): 1.04 (0.90, 1.20) p for trend=0.21	
		Late Gestational Hypertension (Analytic N=45,139)	
		Multivariable logistic regression OR (95% CI)	
		<u>Western DP</u> Q5 vs. Q1 (Ref): 1.19 (1.06, 1.34) Q4 vs. Q1 (Ref): 1.09 (0.98, 1.21)	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Q3 vs. Q1 (Ref): 1.18 (1.07, 1.30) Q2 vs. Q1 (Ref): 1.15 (1.04, 1.26) p for trend=0.02	
		Preeclampsia (Analytic N=54,778) Multivariable logistic regression OR (95% CI)	
		<u>Western DP</u> <i>All participants</i> Q5 vs. Q1 (Ref): 1.40 (1.11, 1.76) Q4 vs. Q1 (Ref): 1.22 (0.99, 1.50) Q3 vs. Q1 (Ref): 1.36 (1.12, 1.65) Q2 vs. Q1 (Ref): 1.15 (0.94, 1.39) p for trend=0.01	
		Pre-pregnancy BMI <18.5 Q5 vs. Q1 (Ref): 1.58 (0.30, 7.34) Q4 vs. Q1 (Ref): 1.20 (0.30, 4.79) Q3 vs. Q1 (Ref): 1.27 (0.34, 4.81) Q2 vs. Q1 (Ref): 0.86 (0.20, 3.73) p for trend=0.53	
		<i>Pre-pregnancy BMI 18.5-24.9</i> Q5 vs. Q1 (Ref): 1.36 (0.97, 1.91) Q4 vs. Q1 (Ref): 1.51 (1.14, 2.02) Q3 vs. Q1 (Ref): 1.38 (1.05, 1.81) Q2 vs. Q1 (Ref): 0.19 (0.91, 1.56) p for trend=0.03	
		<i>Pre-pregnancy BMI</i> ≥25 Q5 vs. Q1 (Ref): 1.21 (0.84, 1.74) Q4 vs. Q1 (Ref): 0.81 (0.57, 1.14) Q3 vs. Q1 (Ref): 1.15 (0.84, 1.58) Q2 vs. Q1 (Ref): 1.02 (0.74, 1.41) p for trend=0.52	
		Male Fetal Sex Q5 vs. Q1 (Ref): 1.10 (0.80, 1.51) Q4 vs. Q1 (Ref): 0.94 (0.70, 1.26) Q3 vs. Q1 (Ref): 1.25 (0.96, 1.64) Q2 vs. Q1 (Ref): 1.17 (0.90, 1.53) p for trend=0.98	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Female Fetal Sex Q5 vs. Q1 (Ref): 1.84 (1.32, 2.57) Q4 vs. Q1 (Ref): 1.59 (1.17, 2.15) Q3 vs. Q1 (Ref): 1.48 (1.12, 1.97) Q2 vs. Q1 (Ref): 1.10 (0.82, 1.47) p for trend<0.0001	
		<u>Seafood DP</u> <i>All participants</i> Q5 vs. Q1 (Ref): 0.79 (0.65, 0.97) Q4 vs. Q1 (Ref): 0.75 (0.62, 0.91) Q3 vs. Q1 (Ref): 0.85 (0.71, 1.02) Q2 vs. Q1 (Ref): 0.88 (0.74, 1.05) p for trend=0.01	
		Pre-pregnancy BMI <18.5 Q5 vs. Q1 (Ref): 0.40 (0.14, 1.14) Q4 vs. Q1 (Ref): 0.31 (0.09, 0.98) Q3 vs. Q1 (Ref): 0.34 (0.11, 1.07) Q2 vs. Q1 (Ref): 0.31 (0.09, 1.09) p for trend=0.19	
		Pre-pregnancy BMI 18.5-24.9 Q5 vs. Q1 (Ref): 0.80 (0.63–1.02) Q4 vs. Q1 (Ref): 0.82 (0.65–1.04) Q3 vs. Q1 (Ref): 0.82 (0.65–1.04) Q2 vs. Q1 (Ref): 0.78 (0.62–0.99) p for trend=0.12	
		Pre-pregnancy BMI ≥25 Q5 vs. Q1 (Ref): 1.21 (0.91–1.61) Q4 vs. Q1 (Ref): 1.06 (0.82–1.38) Q3 vs. Q1 (Ref): 1.07 (0.84–1.36 Q2 vs. Q1 (Ref): 1.04 (0.82–1.30) p for trend=0.27	
		<i>Male Fetal Sex</i> Q5 vs. Q1 (Ref): 0.79 (0.62, 1.01) Q4 vs. Q1 (Ref): 0.90 (0.72, 1.14) Q3 vs. Q1 (Ref): 0.92 (0.74, 1.15) Q2 vs. Q1 (Ref): 0.97 (0.78, 1.20) p for trend=0.20	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		Female Fetal Sex Q5 vs. Q1 (Ref): 0.82 (0.65, 1.05) Q4 vs. Q1 (Ref): 0.73 (0.57, 0.92) Q3 vs. Q1 (Ref): 0.79 (0.63, 0.99) Q2 vs. Q1 (Ref): 0.74 (0.59, 0.93) p for trend=0.55	
		<u>Vegetable/Prudent DP</u> Q5 vs. Q1 (Ref): 1.05 (0.87, 1.27)	
		<u>Nordic DP</u> Q5 vs. Q1 (Ref): 0.84 (0.67, 1.05)	
		<u>Rice/Pasta/Poultry DP</u> Q5 vs. Q1 (Ref): 1.12 (0.93, 1.36)	
		<u>Sweets DP</u> Q5 vs. Q1 (Ref): 1.10 (0.90, 1.35)	
		<u>Alcohol DP</u> Q5 vs. Q1 (Ref): 0.88 (0.73, 1.07)	
		Severe Preeclampsia (Analytic N=55,086) Multivariable logistic regression OR (95% CI)	
		<u>Western DP</u> Q5 vs. Q1 (Ref): 1.26 (0.76, 2.09)	
		<u>Seafood DP</u> Q5 vs. Q1 (Ref): 0.81 (0.53, 1.25)	
		<u>Vegetable/Prudent DP</u> Q5 vs. Q1 (Ref): 1.46 (0.94, 2.26)	
		<u>Nordic DP</u> Q5 vs. Q1 (Ref): 1.24 (0.76, 2.00)	
		<u>Rice/Pasta/Poultry DP</u> Q5 vs. Q1 (Ref): 1.00 (0.68, 1.49)	
		<u>Sweets DP</u> Q5 vs. Q1 (Ref): 0.92 (0.58, 1.45)	
		<u>Alcohol DP</u> Q5 vs. Q1 (Ref): 0.79 (0.52, 1.19)	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
Jarman, 2018 ¹⁵ PCS, Canada, APrON Analytic N =1,545 • Age (y): 31.4±4.2 • Race/Ethnicity (%): White: 84; Non-White: 16 • SEP: • Education (%): <university: 28; University level: 72 • Household yearly income (%): <\$100,000: 42; ≥\$100,000: 58 • Pre-pregnancy BMI (%): 25- <30: 21; ≥30: 11 • Smoking (%): 1.0</university: 	 Healthy DP (continuous alignment) FFQ at: Median 17 GW DP Description: Healthy DP: Higher intakes of other vegetables, green vegetables, fruit (excluding juice), orange vegetables, oils, brown pasta or rice, fish or shellfish, tomatoes, white rice or pasta Outcome and assessment methods: Gestational HTN assessed at: Early diagnosis <24 GW; Later diagnosis ≥24 GW Outcomes taken from birth record. 	Gestational Hypertension Forward stepwise logistic regression OR (95% CI) 0.6 (0.4, 0.9), p=0.01	 Key confounders accounted for: Age, Physical activity, Race/ethnicity, SEP, Pre-pregnancy BMI, Smoking, Parity, DM in current pregnancy Funding: Alberta Innovates Health Solutions Summary: Greater alignment with the Healthy DP was associated with lower risk of gestational HTN.
Miele, 2021 ¹⁷ PCS, Brazil, Preterm SAMBA Analytic N =1,165	Obesogenic DP, Intermediate DP, Vegetarian DP, & Protein DP vs. Traditional DP 24h recall at: 19-21 GW	Preeclampsia Multiple logistic regression OR	Key confounders accounted for: Age, Race/ethnicity, SEP, Pre- pregnancy BMI, Parity, History of HDP,
 Age (%): <19: 25.0; ≥35: 6.7 Race/Ethnicity (%): Non-White: 60.3; White: 39.7 SEP: Education (%): <12y: 67.9 Yearly income (%): \$12,000: 73.9 Employed (%): 50.2 BMI at first visit (%): Overweight: 25.7; Obesity: 17.1 History of HDP (%): 100% nulliparous Current GDM (%): 14.1 	 DP Descriptions: Obesogenic DP: Higher in ultra-processed and processed foods using NOVA classification (refined carbohydrate; fats; sweets) Intermediate DP: Lower consumption of same food groups as "Obesogenic DP" Vegetarian DP: Higher in dairy; fruits; vegetables Protein DP: Higher in fatty meats; eggs; beans; very low quantity of natural foods (using NOVA classification) Traditional DP: Higher in beans; meats; eggs; natural or minimally processed foods (using NOVA classification) Outcome and assessment methods: PE assessed at: >20 GW PE: New onset SBP ≥140mmHg or DBP ≥90mmHg w/ proteinuria and/or evidence of acute kidney injury, liver 	<u>Obesogenic DP vs. Traditional DP (ref):</u> 1.82, p≥0.05 <u>Intermediate DP vs. Traditional DP (ref):</u> 1.12, p≥0.05 <u>Vegetarian DP vs. Traditional DP (ref):</u> 1.85, p≥0.05 <u>Protein DP vs. Traditional DP (ref):</u> 2.60, p<0.05	Other covariates: Region Funding: Brazilian National Research Council; Bill and Melinda Gates Foundation Summary: Greater alignment with the Protein DP was associated with a higher risk of preeclampsia compared to the Traditional DP. Alignment with the Obesogenic DP, Intermediate DP, and Vegetarian DP was not associated with risk of preeclampsia when compared to the Traditional DP.

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
	dysfunction, neurological features, hemolysis or thrombocytopenia, or fetal growth restriction		
Timmermans, 2011 ²⁰	Mediterranean DP & Traditional DP (categorical	Systolic BP	Key confounders accounted for:
PCS, The Netherlands, Generation R Study	alignment) FFQ at Median (IQR): 13.5 (3.4) GW	Linear regression β (95% CI)	Age, Race/ethnicity, SEP, Pre- pregnancy BMI, Smoking, Parity
Analytic N=3,187	DP Descriptions:	<u>Mediterranean DP</u>	Other covariates: Gestational age,
 Age (y): Med Low: 30.2±4.6; Med Medium: 31.6±4.0; Med High: 32.4±4.0, p<0.01; Trad Low: 32.0±3.9; Trad Medium: 	• Mediterranean (Med) DP: Higher in vegetables, vegetable oils, pasta, rice, fish, and legumes, moderate intake of alcohol; Lower in sweets	<i>Mid pregnancy</i> Medium vs. High (Ref): 0.7 (–0.3, 1.6) Low vs. High (Ref): 1.3 (0.3, 2.3) Trend score: -0.5 (-0.9, -0.1)	Vomiting, Folic acid use
31.5±4.2; Trad High: 30.7±4.8, p<0.01	 Traditional (Trad) DP: Higher in meat and potatoes; Lower in fruit, nonalcoholic drinks, fish, and bread 	<i>Late pregnancy</i> Medium vs. High (Ref): 0.7 (-0.3, 1.6)	
 Dutch ethnicity (%): 100 SEP: 	Outcome and assessment methods: BP assessed at: Median (IQR): 20.5 (1.3) and 30.4	Low vs. High (Ref): 0.2 (-0.8, 1.2) Trend score: -0.1 (-0.5, 0.1)	
 Education (%): Low: Med Low: 5.0; Med High: 1.6; High: Med Low: 40.6; Med High: 74.7, p<0.01; Low: Trad Low: 0.7; Trad High: 5.3; High: Trad Low: 72.3; Trad High: 45.5, p<0.01 	(1.1) GW Measured by investigators.	<u>Traditional DP</u> <i>Mid pregnancy</i> Medium vs. Low (Ref): 1.3 (0.4, 2.3) High vs. Low (Ref): 2.3 (1.2, 3.3) Trend score: 0.8 (0.4, 1.3)	
 Pre-pregnancy BMI: Median (IQR): Med Low: 23.0 (4.7); Med Medium: 22.1 (3.7); Med High: 21.8 (3.5), p<0.01; Trad 		<i>Late pregnancy</i> Medium vs. Low (Ref): 0.7 (-0.3, 1.6) High vs. Low (Ref): 2.6 (1.6, 3.6) Trend score: 0.9 (0.5,1.3)	
Low: 21.9 (3.7); Trad Medium: 22.3 (3.7); Trad High: 22.7(4.6), p<0.01 ○ ≥30 (%): Med Low: 12.4; Med High: 5.3, p<0.01:		Diastolic BP Linear regression β (95% CI)	
 History of DM (%): 0.0 Smoking (%): Current: Med Low: 19.3; Med Medium: 13.6; Med High: 11.5; Previous: Med Low: 7.5; Med Medium: 7.6; 		<u>Mediterranean DP</u> <i>Mid pregnancy</i> Medium vs. High (Ref): 0.2 (-0.6, 0.9) Low vs. High (Ref): 1.6 (0.8, 2.4) Trend score: -0.6 (-1.0, -0.3)	
Med High: 9.5, p<0.01; Current: Trad Low: 7.5; Trad Medium: 14.2; Trad High: 22.6; Previous: Trad Low: 7.5; Trad Medium: 9.0; Trad High: 8.1, p<0.01		Late pregnancy Medium vs. High: 0.5 (-0.3, 1.2) Low vs. High (Ref): 1.0 (0.2, 1.8) Trend score: -0.3 (-0.7, -0.1)	

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
		<u>Traditional DP</u> <i>Mid pregnancy</i> Medium vs. Low (Ref): 0.9 (0.1, 1.7) High vs. Low (Ref): 1.3 (0.5, 2.1) Trend score: 0.6 (0.2, 0.9)	
		<i>Late pregnancy</i> Medium vs. Low (Ref): 0.3 (-0.4, 1.1) High vs. Low (Ref): 0.8 (0.1, 1.6) Trend score: 0.3 (-0.1, 0.6)	
Timmermans, 2011 ²⁰ cont.	Outcome and assessment methods: Gestational HTN and PE at: >20 GW Retrieved from medical records.	Gestational HTN Logistic regression OR (95% CI)	Key confounders accounted for: Age, Race/ethnicity, SEP, Pre- pregnancy BMI, Smoking, Parity
	<u>Gestational HTN:</u> SBP ≥140 mmHg and/or DBP ≥90 mmHg in previously normotensive participants on ≥2 occasions) <u>PE:</u> Gestational HTN w/ proteinuria (≥2 dipstick readings of ≥2+, 1 sample reading of ≥1+, or 24h urine collection containing ≥300 mg protein	Mediterranean DP Medium vs. High (Ref): 1.1 (0.8, 1.7) Low vs. High (Ref): 1.3 (0.9, 1.9) Trend score: 0.9 (0.8, 1.1) <u>Traditional DP</u> Medium vs. Low (Ref): 1.0 (0.7, 1.6) High vs. Low (Ref): 1.3 (0.9, 1.9) Trend score: 1.1 (0.9, 1.3) Preeclampsia Logistic regression OR (95% Cl) Medium vs. High (Ref): 1.2 (0.6, 2.3) Low vs. High (Ref): 1.2 (0.6, 2.3) Trend score: 0.8 (0.6, 1.1)	 Other covariates: Vomiting, Folic acid use Funding: Erasmus Medical Center, Rotterdam; Erasmus University Rotterdam; Netherlands Organization for Health Research (ZonMw) Summary: Lower alignment with the Mediterranean DP was associated with higher systolic blood pressure in mid pregnancy, but not late pregnancy. Greater alignment with the Traditional DP was associated with higher systolic blood pressure in both mid and late pregnancy. Lower alignment with the Mediterranean DP with the Mediterranean DP was associated with higher systolic blood pressure in both mid and late pregnancy.
		<u>Traditional DP</u> Medium vs. Low (Ref): 0.7 (0.3, 1.4) High vs. Low (Ref): 1.1 (0.6, 2.1) Trend score: 1.3 (0.9, 1.7)	DP was associated with higher diastolic blood pressure in both mid and late pregnancy. Greater alignment with the Traditional DP was associated with higher diastolic blood pressure in mid pregnancy, but the trend was not significant in late pregnancy.
			Lower alignment with the Mediterranear DP and greater alignment with the

Study Characteristics	Intervention or Exposure and Outcome	Results	Confounders, Funding, and Summary
			Traditional DP was associated with higher risk of both gestational hypertension and preeclampsia.
Torjusen, 2014 ²¹ PCS, Norway, MoBa Analytic N=28,192 • Age (y): Low organic food	Health and sustainability DP (tertiles of alignment) FFQ at: 20.7±3.7 GW DP Description:	Preeclampsia Binary logistic regression OR (95% Cl) T2 vs. T1 (Ref): 0.80 (0.70, 0.91), p=0.001	Key confounders accounted for: Age, Race/ethnicity, SEP, Pre- pregnancy BMI, Smoking, History of HDP
 consumption (Low): 28.6±4.3; Frequent organic food consumption (Frequent): 27.6±4.9, p<0.001 Race/Ethnicity (%): White: >99 SEP: Education (%): ≤12y: Low: 25.5; Frequent: 37.7, p<0.001; ≥17y: Low: 27.1; Frequent: 28.6, p<0.05 High household income (%): Low: 29.7; Frequent: 23.1, p<0.001 Pre-pregnancy BMI: Low: 23.8±4.1; Frequent: 23.3±3.9, p<0.001 History of HTN (%): Low: 0.5; Frequent: 0.2, p<0.05 Smoking (%): Low: 6.6; Frequent: 11.0, p<0.001 	 Health and sustainability DP: High in vegetables; fruit and berries; cooking oil; olive oil; whole grain products; low in meat, including processed meat; white bread; salty snacks; Pommes frites; cakes and sweets Outcome and assessment methods: Preeclampsia assessed at: >20 GW <u>PE:</u> Reported preeclampsia (>140 mmHg/90 mmHg BP w/ proteinuria >1+ dipstick on ≥2 occasions), HELLP syndrome (hemolysis, elevated liver enzymes, and low platelet count), eclampsia, early preeclampsia (<34 GW), mild preeclampsia, and severe preeclampsia on the birth notification form 	T3 vs. T1 (Ref): 0.73 (0.64, 0.84), p<0.001 p for trend <0.001	Other covariates: Height, TEI, GWG Funding: The Research Council of Norway, The Food Programme; Norwegian Ministry of Health; Norwegian Ministry of Education and Research; NIH/NIEHS; NIH/NINDS Summary: Greater alignment with the Health and sustainability DP was associated with reduced risk of preeclampsia.

^a Abbreviations: \$#K: # thousands of dollars; AHA: American Heart Association; AHEI: Alternative Healthy Eating Index; AHEI-P: Alternate Healthy Eating Index for Pregnancy; aMed: alternate Mediterranean Diet; aOR: adjusted odds ratio; BIGCS: Born in Guangzhou Cohort Study; BMI: body mass index; CDGCI-PW: Chinese Dietary Guidelines Compliance Index for Pregnant Women; CI: confidence interval; DASH: Dietary Approaches to Stop Hypertension; DHA: docosahexaenoic acid; DM: diabetes mellitus; DP: dietary pattern(s); EPA: eicosapentaenoic acid; EVOO: extra virgin olive oil; FFQ: food frequency questionnaire; FPL: Federal poverty level; g: gram(s); GDM: gestational diabetes mellitus; GRMRS: Gestational Diabetes in the Mediterranean Region Study; GW: gestational weeks; GWG: gestational weight gain; h: hour(s); HDP: hypertensive disorders of pregnancy; HEI: Healthy Eating Index; HTN: hypertension; IADPSG: International Association of the Diabetes and Pregnancy Study Groups; I: liter; MDI: Mediterranean Diet Index; MDS: Mediterranean diet score; MEDAS: Mediterranean Diet Adherence Screener; MedDiet: Mediterranean diet; mmol: millimole; mo: month; NFFD: Norwegian Fit for Delivery; NICHD: *Eunice Kennedy Shriver* National Institute of Child Health and Development; NIH: National Institutes of Health; NND: New Nordic Diet; NR: not reported; NS: non-significant; OR: odds ratio; PCA: principal component analysis; PCS: prospective cohort study; PUFA: polyunsaturated fatty acid; Q#: quartile; RCT: randomized controlled trial; Ref: reference; SD: standard deviation; SEP: SEP; SFA: saturated fatty acid; T#: tertile; TEI: total energy intake; TG: triglycerides; week(s); y: year(s)

Table 8. Risk of bias for randomized controlled trials examining dietary patterns consumed during pregnancy and hypertensive disorders of pregnancy^a

Article	Randomization	Deviations from intended interventions (effect of assignment) or (per-protocol)	Missing outcome data	Outcome measurement	Selection of the reported result	Overall risk of bias
Al Wattar, 2019 ²⁴	LOW	LOW	LOW	LOW	LOW	LOW
Assaf-Balut, 2017 ²⁵ (24-28 GW)	LOW	LOW	LOW	LOW	HIGH	HIGH
Assaf-Balut, 2017 ²⁵ (36-38 GW)	LOW	HIGH	HIGH LOW LOW		HIGH	HIGH
Assaf-Balut, 2019 ²⁶	LOW	SOME CONCERNS	LOW	LOW	HIGH	нідн
Crovetto, 2021 ²⁷	LOW	HIGH	LOW	LOW	LOW	нідн
Dodd, 2019 ²⁸	LOW	LOW	LOW	LOW	LOW	LOW
Khoury, 2005 ²⁹	LOW	LOW	SOME CONCERNS	LOW	SOME CONCERNS	SOME CONCERNS
Melero, 2020 ³⁰ (24-28 GW)	LOW	LOW	LOW	LOW	HIGH	HIGH
Melero, 2020 ³⁰ (36-38 GW)	LOW	HIGH	LOW	LOW	HIGH	HIGH
Zhao, 2022 ³¹ (24-28 GW)	LOW	LOW	SOME CONCERNS	LOW	SOME CONCERNS	SOME CONCERNS
Zhao, 2022 ³¹ (36-38 GW)	LOW	HIGH	SOME CONCERNS	LOW	SOME CONCERNS	HIGH

^a Possible ratings of low, some concerns, or high determined using the <u>"Cochrane Risk-of-bias 2.0" (RoB 2.0)</u> (August 2019 version)" (Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ* 2019; **366**: I4898. doi:10.1136/bmj.I4898

Table 9. Risk of bias for non-randomized controlled trials examining dietary patterns consumed during pregnancy and hypertensive disorders of pregnancy^a

Article	Confounding	Selection of participants	Classification of interventions	Deviations from intended interventions	Missing data	Outcome measurement	Selection of the reported result	Overall risk of bias
Melero, 2020 ³⁰ (24-28 GW)	SERIOUS	LOW	SERIOUS	LOW	LOW	LOW	SERIOUS	SERIOUS
Melero, 2020 ³⁰ (36-38 GW)	SERIOUS	LOW	SERIOUS	SERIOUS	LOW	LOW	SERIOUS	SERIOUS

^a Possible ratings of low, moderate, serious, critical, or no information determined using the "<u>Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) tool</u>" (Sterne JAC, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016; 355; i4919; doi: 10.1136/bmj.i4919.)

Article	Confounding	Exposure measurement	Selection of participants	Post-exposure interventions	Missing data	Outcome measurement	Selection of the reported result	Overall risk of bias
Arvizu, 2020 ¹	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	LOW*	SOME CONCERNS	LOW	HIGH	HIGH
Brantsaeter, 2009 ²	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	HIGH	LOW	HIGH	HIGH
Courtney, 2020 ³	HIGH	LOW	LOW	SOME CONCERNS	HIGH	LOW	SOME CONCERNS	HIGH
de Seymour, 2022 ⁴	HIGH	LOW	LOW	LOW	HIGH	LOW	SOME CONCERNS	HIGH
Ding, 2021 ⁵	HIGH	LOW	SOME CONCERNS	SOME CONCERNS	HIGH	LOW	SOME CONCERNS	HIGH
Flor-Alemany, 2021 ⁶	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	HIGH	LOW	SOME CONCERNS	HIGH
Flynn, 2016 ⁸	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	LOW	SOME CONCERNS	HIGH
Fulay, 2018 ⁷	HIGH	LOW	LOW	LOW	HIGH	LOW	SOME CONCERNS	HIGH
Hajianfar, 2018 ⁹	HIGH	SOME CONCERNS	LOW	LOW	SOME CONCERNS	LOW	SOME CONCERNS	HIGH
Hillesund, 2014 ¹⁰	LOW*	SOME CONCERNS	SOME CONCERNS	LOW	HIGH	LOW	HIGH	HIGH
Hillesund, 2018 ¹¹	SOME CONCERNS	LOW	SOME CONCERNS	LOW	SOME CONCERNS	LOW	SOME CONCERNS	HIGH
Hu, 2022 ¹²	LOW	SOME CONCERNS	SOME CONCERNS	HIGH	SOME CONCERNS	LOW	HIGH	HIGH
lkem, 2019 ¹³ (Gestational HTN)	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	LOW	SOME CONCERNS	SOME CONCERNS	HIGH	HIGH
Ikem, 2019 ¹³ (PE and Severe PE)	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	LOW	SOME CONCERNS	LOW	HIGH	HIGH
Jarman, 2018 ¹⁵	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	LOW	HIGH	LOW	HIGH	HIGH

Table 10. Risk of bias for observational studies examining dietary patterns consumed during pregnancy and hypertensive disorders or pregnancy^a

Li, 2021 ¹⁴	LOW	SOME CONCERNS	SOME CONCERNS	HIGH	HIGH	LOW	SOME CONCERNS	HIGH
Makarem, 2022 ¹⁶	SOME CONCERNS	LOW	LOW	SOME CONCERNS	HIGH	LOW	HIGH	HIGH
Miele, 2021 ¹⁷	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	LOW	HIGH	LOW	SOME CONCERNS	HIGH
Miller, 2022 ¹⁸	HIGH	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	HIGH	LOW	SOME CONCERNS	HIGH
Rifas-Shiman, 2009 ¹⁹	SOME CONCERNS	LOW	LOW	LOW	HIGH	LOW	SOME CONCERNS	HIGH
Timmermans, 2011 ²⁰	SOME CONCERNS	SOME CONCERNS	LOW	SOME CONCERNS	HIGH	LOW	SOME CONCERNS	HIGH
Torjusen, 2014 ²¹	HIGH	SOME CONCERNS	SOME CONCERNS	SOME CONCERNS	HIGH	LOW	HIGH	HIGH
Wiertsema, 2021 ²²	SOME CONCERNS	LOW	LOW	LOW	HIGH	LOW	SOME CONCERNS	HIGH
Yee, 2020 ²³	SOME CONCERNS	LOW	LOW	LOW	HIGH	LOW	HIGH	HIGH

^a Possible ratings of low, some concerns, high, very high, no information, or not applicable were determined using the "Risk of Bias in Non-randomized Studies of Exposures (ROBINS-E)" tool (ROBINS-E Development Group (Higgins JPT, Morgan RL, Rooney AA, et al. A tool to assess risk of bias in non-randomized follow-up studies of exposure effects (ROBINS-E). *Environment International* 2024 (published online Mar 24); doi: <u>10.1016/j.envint.2024.108602</u>). *Low risk of bias except for concerns about uncontrolled confounding.

Acknowledgments and funding

The Committee members were involved in: establishing all aspects of the protocol, which presented the plan for how they would examine the scientific evidence, including the inclusion and exclusion criteria; reviewing all studies that met the criteria they set; deliberating on the body of evidence for each question; and writing and grading the conclusion statements. The NESR team, with assistance from Federal Liaisons (Dennis Anderson-Villaluz, MBA, RD, LDN, FAND; Hazel Hiza, PhD; Rachel Inman, MS, RD; Sarah Karp, MNSP, RD, LDN; Tessa Lasswell, MPH, RDN; TusaRebecca Pannucci, PhD, MPH, RD; Elizabeth Rahavi, RD; Kelley Scanlon, PhD, RD; Colleen Cruz, MPH, RDN) and Project Leadership (Janet de Jesus, MS, RD; Eve Stoody, PhD), supported the Committee by facilitating, executing, and documenting the work necessary to ensure the reviews were completed in accordance with NESR methodology. Contractor support was also provided by Panum Panum Telecom, LLC, a wholly owned subsidiary of Aretum (Emily Madan, PhD).

The Committee and NESR staff thank staff from the National Institutes of Health (NIH), for coordinating the peer review of this systematic review, and the peer reviewers for their time and expertise.

Funding: United States Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Alexandria, VA

References of the articles included in the systematic review

- 1. Arvizu M, Bjerregaard AA, Madsen MTB, et al. Sodium Intake during Pregnancy, but Not Other Diet Recommendations Aimed at Preventing Cardiovascular Disease, Is Positively Related to Risk of Hypertensive Disorders of Pregnancy. *J Nutr.* 2020;150(1):159-166. doi:10.1093/jn/nxz197
- Brantsaeter AL, Haugen MS, S.O., Torjusen H, et al. A dietary pattern characterized by high intake of vegetables, fruits, and vegetable oils is associated with reduced risk of preeclampsia in nulliparous pregnant Norwegian women. J Nutr. 2009;139(6)doi:10.3945/jn.109.104968
- 3. Courtney AU, O'Brien EC, Crowley RK, et al. DASH (Dietary Approaches to Stop Hypertension) dietary pattern and maternal blood pressure in pregnancy. *J Hum Nutr Diet*. 2020;33(5):686-697. doi:10.1111/jhn.12744
- de Seymour JV, Beck KL, Conlon CA, et al. An Investigation of the Relationship Between Dietary Patterns in Early Pregnancy and Maternal/Infant Health Outcomes in a Chinese Cohort. *Front Nutr*. 2022;9doi:10.3389/fnut.2022.775557
- Ding Y, Xu F, Zhong C, et al. Association between Chinese Dietary Guidelines Compliance Index for Pregnant Women and Risks of Pregnancy Complications in the Tongji Maternal and Child Health Cohort. *Nutrients*. 2021;13(3)doi:10.3390/nu13030829
- Flor-Alemany M, Acosta P, Marín-Jiménez N, Baena-García L, Aranda P, Aparicio VA. Influence of the degree of adherence to the mediterranean diet and its components on cardiometabolic risk during pregnancy. The GESTAFIT project. *Nutr Metab Cardiovasc Dis.* 2021;31(8):2311-2318. doi:10.1016/j.numecd.2021.04.019
- Fulay AP, Rifas-Shiman SL, Oken E, Perng W. Associations of the dietary approaches to stop hypertension (DASH) diet with pregnancy complications in Project Viva. *Eur J Clin Nutr*. 2018;72(10):1385-1395. doi:10.1038/s41430-017-0068-8
- 8. Flynn AC, Seed PT, Patel N, et al. Dietary patterns in obese pregnant women; influence of a behavioral intervention of diet and physical activity in the UPBEAT randomized controlled trial. *Int J Behav Nutr Phys Act*. 2016;13. doi:10.1186/s12966-016-0450-2
- 9. Hajianfar H, Esmaillzadeh A, Feizi A, Shahshahan Z, Azadbakht L. The Association Between Major Dietary Patterns and Pregnancy-related Complications. *Arch Iran Med.* 2018;21(10):443-451.
- Hillesund ER, N.C. Ø, Engel SM, et al. Associations of adherence to the New Nordic Diet with risk of preeclampsia and preterm delivery in the Norwegian Mother and Child Cohort Study (MoBa). *Eur J Epidemiol*. 2014;29(10):753-65. doi:10.1007/s10654-014-9948-6
- 11. Hillesund ER, Bere E, Sagedal LR, et al. Pre-pregnancy and early pregnancy dietary behavior in relation to maternal and newborn health in the Norwegian Fit for Delivery study a post hoc observational analysis. *Food Nutr Res.* 2018;62doi:10.29219/fnr.v62.1273
- 12. Hu J, Li L, Wan N, et al. Associations of Dietary Patterns during Pregnancy with Gestational Hypertension: The "Born in Shenyang" Cohort Study. *Nutrients*. 2022;14(20)doi:10.3390/nu14204342
- Ikem E, Halldorsson TI, Birgisdóttir BE, Rasmussen MA, Olsen SF, Maslova E. Dietary patterns and the risk of pregnancy-associated hypertension in the Danish National Birth Cohort: a prospective longitudinal study. *BJOG*. 2019;126(5):663-673. doi:10.1111/1471-0528.15593
- 14. Li M, Grewal J, Hinkle SN, et al. Healthy dietary patterns and common pregnancy complications: a prospective and longitudinal study. *Am J Clin Nutr*. 2021;114(3):1229-1237. doi:10.1093/ajcn/nqab145
- 15. Jarman M, Mathe N, Ramazani F, et al. Dietary Patterns Prior to Pregnancy and Associations with Pregnancy Complications. *Nutrients*. 2018;10(7)doi:10.3390/nu10070914
- Makarem N, Chau K, Miller EC, et al. Association of a Mediterranean Diet Pattern With Adverse Pregnancy Outcomes Among US Women. *JAMA Netw Open*. 2022;5(12):e2248165. doi:10.1001/jamanetworkopen.2022.48165
- 17. Miele M, Souza R, Calderon IM, et al. Maternal Nutrition Status Associated with Pregnancy-Related Adverse Outcomes. *Nutrients*. 2021;13(7)doi:10.3390/nu13072398
- 18. Miller CA-O, Boushey C, Benny P, et al. Diet quality predicts hypertensive disorders of pregnancy in Asian and Pacific Islander Cohort. *Nutr Health*. 2022:1-10. doi:10.1177/02601060221109668

- Rifas-Shiman SL, W. R-EJ, Kleinman KP, Oken E, Gillman MW. Dietary quality during pregnancy varies by maternal characteristics in Project Viva: a US cohort. *J Am Diet Assoc*. 2009;109(6):1004-11. doi:10.1016/j.jada.2009.03.001
- 20. Timmermans S, R.P. S-T, Vujkovic M, et al. Major dietary patterns and blood pressure patterns during pregnancy: the Generation R Study. *Am J Obstet Gynecol*. 2011;205(4):e1-12. doi:10.1016/j.ajog.2011.05.013
- Torjusen H, Brantsæter AL, Haugen M, et al. Reduced risk of pre-eclampsia with organic vegetable consumption: results from the prospective Norwegian Mother and Child Cohort Study. *BMJ Open*. 2014;4(9) doi:10.1136/bmjopen-2014-006143
- 22. Wiertsema CJ, Mensink-Bout SM, Duijts L, Mulders A, Jaddoe VWV, Gaillard R. Associations of DASH Diet in Pregnancy With Blood Pressure Patterns, Placental Hemodynamics, and Gestational Hypertensive Disorders. *J Am Heart Assoc*. 2021;10(1)doi:10.1161/JAHA.120.017503
- 23. Yee LM, Silver RM, Haas DM, et al. Quality of periconceptional dietary intake and maternal and neonatal outcomes. *Am J Obstet Gynecol*. 2020;223(1)doi:10.1016/j.ajog.2020.01.042
- 24. Al Wattar BH, Dodds J, Placzek A, et al. Mediterranean-style diet in pregnant women with metabolic risk factors (ESTEEM): A pragmatic multicentre randomised trial. *PloS Med*. 2019;16(7)doi:10.1371/journal.pmed.1002857
- 25. Assaf-Balut C, García de la Torre N, Durán A, et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): A randomized controlled trial: The St. Carlos GDM prevention study. *PloS One*. 2017;12(10)doi:10.1371/journal.pone.0185873
- 26. Assaf-Balut C, García de la Torre N, Duran A, et al. A Mediterranean Diet with an Enhanced Consumption of Extra Virgin Olive Oil and Pistachios Improves Pregnancy Outcomes in Women Without Gestational Diabetes Mellitus: A Sub-Analysis of the St. Carlos Gestational Diabetes Mellitus Prevention Study. Ann Nutr Metab. 2019;74(1):69-79. doi:10.1159/000495793
- Crovetto F, Crispi F, Casas R, et al. Effects of Mediterranean Diet or Mindfulness-Based Stress Reduction on Prevention of Small-for-Gestational Age Birth Weights in Newborns Born to At-Risk Pregnant Individuals: The IMPACT BCN Randomized Clinical Trial. *JAMA*. 2021;326(21)doi:10.1001/jama.2021.20178
- 28. Dodd JM, Deussen AR, Louise J. A Randomised Trial to Optimise Gestational Weight Gain and Improve Maternal and Infant Health Outcomes through Antenatal Dietary, Lifestyle and Exercise Advice: The OPTIMISE Randomised Trial. *Nutrients*. 2019;11(12)doi:10.3390/nu11122911
- 29. Khoury J, T. H, Christophersen B, Tonstad S. Effect of a cholesterol-lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: a randomized clinical trial. *Am J Obstet Gynecol*. 2005;193(4):1292-301. doi:10.1016/j.ajog.2005.05.016
- 30. Melero V, García de la Torre N, Assaf-Balut C, et al. Effect of a Mediterranean Diet-Based Nutritional Intervention on the Risk of Developing Gestational Diabetes Mellitus and Other Maternal-Fetal Adverse Events in Hispanic Women Residents in Spain. *Nutrients*. 2020;12(11):3505. doi:10.3390/nu12113505
- 31. Zhao L, Zhang P, Zheng Q, Deka A, Choudhury R, Rastogi S. Does a MediDiet With Additional Extra Virgin Olive Oil and Pistachios Reduce the Incidence of Gestational Diabetes? *Endocr Pract.* 2022;28(2):135-141. doi:10.1016/j.eprac.2021.08.010

Appendices

Appendix 1: Abbreviations

Table A 1. List of abbreviations

Abbreviation	Full name
BMI	Body mass index
DASH	Dietary Approaches to Stop Hypertension
DM	Diabetes mellitus
DP	Dietary pattern
EVOO	Extra virgin olive oil
FBG	Fasting blood glucose
FFQ	Food frequency questionnaire
GDM	Gestational diabetes mellitus
GW	Gestational weeks
HDI	Human Development Index
HDP	Hypertensive disorders of pregnancy
HELLP	Hemolysis, Elevated Liver enzymes and Low Platelets
HHS	United States Department of Health and Human Services
NESR	Nutrition Evidence Systematic Review
NICHD	Eunice Kennedy Shriver National Institute of Child Health and Development
NRCT	Non-randomized controlled trial
PCS	Prospective cohort study
RCT	Randomized controlled trial
SEP	Socioeconomic position
SES	Socioeconomic status
TFD	Three-day food diary
USDA	United States Department of Agriculture

Appendix 2: Conclusion statements from the existing systematic review

Table A 2. Conclusion statements from the existing systematic review for the research question: What is the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy?

Citation	Conclusion statement and grade
Raghavan R, Dreibelbis C, Kingshipp BJ, Wong, YP, Terry N, Abrams B, Bartholomew A, Bodnar LM, Gernand A, Rasmussen K, Siega-Riz AM, Stang JS, Casavale KO, Spahn JM, Stoody E. Dietary Patterns before and during Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review. April 2019. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.PB242018.SR0101	Limited evidence in healthy Caucasian women with access to health care suggests that dietary patterns before and during pregnancy higher in vegetables, fruits, whole grains, nuts, legumes, fish, and vegetable oils and lower in meat and refined grains are associated with a reduced risk of hypertensive disorders of pregnancy, including preeclampsia and gestational hypertension. Not all components of the assessed dietary patterns were associated with all hypertensive disorders. (Grade: Limited) Evidence is insufficient to estimate the association between dietary patterns before and during pregnancy and risk of hypertensive disorders of pregnancy in minority women and those of lower socioeconomic status.

Appendix 3: Inclusion and exclusion criteria comparison between existing and updated systematic reviews

Table A 3. Inclusion and exclusion criteria comparison between existing^{*} and updated systematic reviews for the research question: What is the relationship between dietary patterns consumed during pregnancy and risk of hypertensive disorders of pregnancy?

Category	Existing Review	Updated Review	Change and Rationale
Study design	Included:• Randomized controlled trials• Prospective cohort studies• Retrospective cohort studies• Retrospective cohort studies• Nested case-control studiesExcluded:• Non-randomized controlled trials• Cross-sectional studies• Case-control studies• Uncontrolled studies• Pre-post studies with a control• Pre-post studies without a control• Narrative reviews• Systematic reviews• Meta-analyses	 Included: Randomized controlled trials Non-randomized controlled trials[†] Prospective cohort studies Retrospective cohort studies Nested case-control studies Excluded: Uncontrolled trials[‡] Case-control studies Cross-sectional studies Ecological studies Narrative reviews Systematic reviews Meta-analyses Modeling and simulation studies 	Non-randomized controlled trials, including quasi-experimental and controlled before- and-after studies, will be included in the updated review to align with current NESR standards.
Publication date	<u>Included</u> : • January 1980 – January 2017 <u>Excluded</u> : • Before January 1980, after January 2017	<u>Included</u> : • January 1980 – May 2023 [§] <u>Excluded</u> : • Before January 1980, after May 2023	End of the date range is updated to extend from the end of the search in the existing review to the present.

^{*} Raghavan R, Dreibelbis C, Kingshipp BJ, et al. Dietary Patterns before and during Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review. April 2019. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.PB242018.SR0101

[†] Including quasi-experimental and controlled before-and-after studies

[‡] Including uncontrolled before-and-after studies

[§] This review update date range encompasses the original systematic review date range, which included articles published from January 1980 to January 2017

Category	Existing Review	Updated Review	Change and Rationale No changes other than to wording for clarity.	
Population: Study participants	Included: • Human subjects <u>Excluded</u> : • Animal and in vitro models	<u>Included</u> : • Human <u>Excluded</u> : • Non-human		
Population: Life stage	 Included: At intervention or exposure: Adolescent girls and women capable of becoming pregnant (15-44 years) Pregnant girls and women (15-44 years) – single and multiple pregnancies At outcome: Pregnant girls and women (15-44 years) – single and multiple pregnancies Excluded: N/A 	 Included: At intervention or exposure and outcome: Individuals during pregnancy Excluded: At intervention or exposure and outcome: Individuals before pregnancy Individuals before pregnancy Individuals during postpartum 	Individuals before pregnancy were excluded from the updated review based on 2025 DGAC question prioritization discussions. Minor changes were made to formatting and wording for clarity.	

Category	Existing Review	Updated Review	Change and Rationale
Population: Health Status	Included: • Studies conducted in generally healthy women of reproductive age, including women in pre/periconception and pregnancy • Studies conducted in samples with elevated chronic disease risk or pregnancy related conditions, or that enroll some subjects with a disease or with health outcome of interest such as: Anemia Gestational diabetes Hypertension Preeclampsia Hyperemesis Gravidarum Previous adverse outcome (e.g., preterm) Obesity Excluded: • Studies that exclusively enroll subjects with a disease or with the health outcome of interest (intermediate or endpoint health outcomes) • Studies that exclusively enroll subjects with a disease or with the health outcome of interest (intermediate or endpoint health outcomes) • Studies done in hospitalized or malnourished subjects, if hospitalization is not related to index pregnancy	 Included: Studies that <u>exclusively</u> enroll participants not diagnosed with a disease[*] Studies that enroll <u>some</u> participants: diagnosed with a disease; with the outcome of interest; who became pregnant using Assisted Reproductive Technologies; with multiple gestation pregnancies; pre- or post-bariatric surgery; and/or hospitalized for an illness, injury, or surgery Studies that <u>exclusively</u> enroll participants: diagnosed with a disease;[†] with the outcome of interest (i.e., studies that <u>exclusively</u> enroll participants who have already been diagnosed with the outcome of interest); who became pregnant using Assisted Reproductive Technologies; with the outcome of interest; who have already been diagnosed with the outcome of interest); who became pregnant using Assisted Reproductive Technologies; with multiple gestation pregnancies; pre- or post-bariatric surgery; and/or hospitalized for an illness, injury, or surgery[±] 	Studies that exclusively enroll participants with obesity are included in the updated review due to its prevalence and relevance as a risk factor for other conditions. All other changes are to formatting and wording for clarity.

^{*} Studies that enroll participants who are at risk for chronic disease will be included

[†] Studies that exclusively enroll participants with obesity will be included

[‡] Studies that exclusively enroll participants post-cesarean section will be included

Category	Existing Review	Updated Review	Change and Rationale
Population: Analytic approach	Not specified	 <u>Included</u>: Studies that enroll both singleton and multiple gestation pregnancies and present uncombined findings <u>Excluded</u>: Studies that enroll both singleton and multiple gestation pregnancies and only present aggregate findings 	Criteria were added to the updated review to clarify that studies enrolling participants with both singleton and multiple gestation pregnancies will only be included if the singleton pregnancy findings can be isolated.

Category	Existing Review	Updated Review	Change and Rationale
Intervention/exposure	 Included: Studies that provide a description of the dietary pattern(s) (i.e., foods and beverages) consumed by subjects and that methodologically use: Indices & scores Cluster or factor analysis Reduced rank regression Other methods Excluded: Studies that do not provide a description of the dietary pattern(s) (i.e., foods and beverages) consumed by subjects[*] 	 Included: Studies that examine consumption of and/or adherence to a dietary pattern [i.e., the quantities, proportions, variety, or combination of different foods, drinks, and nutrients (when available) in diets, and the frequency with which they are habitually consumed], including, at a minimum, a description of the foods and beverages in the pattern of each intervention/exposure and comparator group Dietary patterns may be measured or derived using a variety of approaches, such as adherence to a priori patterns (indices/scores), data driven patterns (factor or cluster analysis), reduced rank regression, or other methods, including clinical trials Multi-component intervention in which the isolated effect of the dietary pattern on the outcome(s) of interest is provided or can be determined 	Revisions were made to clarify the intent of the intervention/exposure criteria, but do not represent a change in how the criteria were applied.
		 Excluded: Studies that do not provide a description of the dietary pattern, which at minimum, must include the foods and beverages in the pattern (i.e., studies that examine a labeled dietary pattern, but do not describe the foods and beverages consumed in each intervention/exposure and comparator group) Multi-component intervention in which the isolated effect of the dietary pattern on the outcome(s) of interest is not analyzed or cannot be determined (e.g., due to multiple intervention) 	

, groups)

multiple intervention components within

Category	Existing Review	Updated Review	Change and Rationale
Comparator	 Included: Different levels of adherence to a dietary pattern Adherence to a different dietary pattern <u>Excluded</u>: N/A 	 Included: Consumption of and/or adherence to a different dietary pattern Different levels of consumption of and/or adherence to a dietary pattern Excluded: Consumption of and/or adherence to a similar dietary pattern of which only a specific component or food source is different between groups 	Revisions were made to clarify the intent of the comparator criteria, but do not represent a change in how the criteria were applied.
Outcome(s)	 Included: Hypertensive disorders of pregnancy: 1) preeclampsia-eclampsia, 2) preeclampsia superimposed on chronic hypertension, and 3) gestational hypertension Intermediate outcomes: Blood pressure Levels of protein in the urine (proteinuria) Excluded: N/A 	 Included: Blood pressure (systolic, diastolic) Protein in the urine (proteinuria) Eclampsia Preeclampsia Gestational hypertension Excluded: N/A 	No changes other than to wording and formatting for clarity.
Confounders	Included: • N/A <u>Excluded</u> : • N/A	 Included: Studies that control for one or more of the key confounders listed in the analytic framework. Excluded: Studies that do not control for any of the key confounders listed in the analytic framework. 	Criteria were added to enable focus on a stronger body of evidence.

^{*} For example, a study would be excluded from the systematic review if the dietary pattern were labeled "vegetarian" but lacked a description of what foods/beverages were consumed as part of that dietary pattern

Category	Existing Review	Updated Review	Change and Rationale	
Temporality	Included:	Not specified	Criteria are covered under "Study Design".	
	Studies when the exposure was assessed prior to the outcome			
	 Studies when exposure and outcome assessment occurred during overlapping time periods, as long as the study explicitly states that the exposure was assessed prior to the outcome 			
	Excluded:			
	• Studies when the outcome was assessed prior to the exposure			
	 Studies when exposure and outcome assessment occurred during overlapping time periods and the study does not explicitly state that the exposure was assessed prior to the outcome 			
Publication status	Included:	Included:	No changes other than to wording for clarity	
	Studies published in peer-reviewed journals	Peer-reviewed articles published in		
	Excluded:	research journals		
	Grey literature, including unpublished data,	Excluded:		
	manuscripts, reports, abstracts, conference proceedings	 Non-peer-reviewed articles, unpublished data or manuscripts, pre-prints, reports, editorials, retracted articles, and conference abstracts or proceedings 		
Language	Included:	Included:	No changes other than to wording for clarity	
	Studies published in English	Published in English		
	Excluded:	Excluded:		
	 Studies published in languages other than English 	Not published in English		

Category	Existing Review	Updated Review	Change and Rationale
Country*	Included:	Included:	No changes other than to wording for clarity.
	 Studies conducted in Very High and High Human Development Countries <u>Excluded:</u> 	• Studies conducted in countries classified as high or very high on the Human Development Index the year(s) the intervention/exposure data were collected	
	 Studies conducted in Medium and Low Human Development Countries 	 Excluded: Studies conducted in countries classified as medium or low on the Human Development Index the year(s) the intervention/exposure data were collected 	

^{*} The classification of countries on the Human Development Index (HDI) is based on the UN Development Program Human Development Report Office (<u>http://hdr.undp.org/en/data</u>) for the year the study intervention occurred or data were collected. If the study does not report the year(s) in which the intervention/exposure data were collected, the HDI classification for the year of publication is applied. Studies conducted prior to 1990 are classified based on 1990 HDI classifications. If the year is more recent than the available HDI values, then the most recent HDI classifications are used. If a country is not listed in the HDI, then the current country classification from the World Bank is used (The World Bank. World Bank country and lending groups. Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world- country-and-lending-groups)

Appendix 4: Literature search strategy

Search from the existing review

The literature search conducted for the existing review identified articles published between January 1980-January 2017. For the complete search documentation, refer to:

Suggested citation: Raghavan R, Dreibelbis C, Kingshipp BJ, Wong, YP, Terry N, Abrams B, Bartholomew A, Bodnar LM, Gernand A, Rasmussen K, Siega-Riz AM, Stang JS, Casavale KO, Spahn JM, Stoody E. Dietary Patterns before and during Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review. April 2019. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.PB242018.SR0101.

Search A:

This search was conducted to update the search from the existing review (referenced above) and identify articles published between the included dates of that existing review and Search B (detailed below). This search was used in both this review and in the systematic review that examines the relationship between dietary patterns consumed during pregnancy and risk of gestational diabetes mellitus.

Database: PubMed Provider: U.S. National Library of Medicine Date(s) Searched: February 23, 2022 Dates Covered: January 1, 2017- October 21, 2019

Table A 4. Search for PubMed (Search A)

Search #	Concept	String
#1	Dietary Patterns	("dietary pattern*"[tiab] OR "diet pattern*"[tiab] OR "eating pattern*"[tiab] OR "food pattern*"[tiab] OR "diet quality"[tiab] OR "dietary quality"[tiab] OR "diet variety"[tiab] OR "dietary variety"[tiab] OR "varied diet"[tiab] OR "dietary guideline*"[tiab] OR "dietary recommendation*"[tiab] OR "dietary intake*"[tiab] OR "eating style*"[tiab] OR "Diet, Mediterranean"[Mesh] OR "Mediterranean Diet*"[tiab] OR "Dietary Approaches To Stop Hypertension"[Mesh] OR "Dietary Approaches To Stop Hypertension Diet*"[tiab] OR "DASH diet*"[tiab] OR "Diet, Gluten-Free"[Mesh] OR "Gluten Free diet*"[tiab] OR "Paleolithic Diet*"[tiab] OR "Diet, Paleolithic"[Mesh] OR "Paleolithic Diet*"[tiab] OR "Diet, Healthy"[Mesh] OR "healthy diet*"[tiab] OR "Diet, Healthy"[Mesh] OR "healthy diet*"[tiab] OR "Diet, Healthy"[Mesh] OR "healthy diet*"[tiab] OR "Nordic Diet*"[tiab] OR "Diet, Western"[Mesh] OR "Diet, Fat-Restricted"[Mesh] OR "Diet, High-Fat"[Mesh] OR "high-fat diet*"[tiab] OR "low fat diet*"[tiab] OR "Diet, Sodium-Restricted"[Mesh] OR "low-sodium diet*"[tiab] OR "low salt diet*"[tiab] OR (("Guideline Adherence"[Mesh] OR "guideline adherence*"[tiab] OR nutrition*[tiab] OR dietary[tiab] OR food[tiab] OR beverage*[tiab] OR nutrition*[tiab] OR dietary[tiab] OR food[tiab] OR MedDietScore[tiab] OR "dietary index*"[tiab] OR "food score*"[tiab] OR "diet MedDietScore[tiab] OR "healthy eating index"[tiab] OR

Search #	Concept	String
#2	Hypertension	hypertensi*[tiab] OR Hypertension[MeSH:NoExp] OR "Pre-Eclamp*"[tiab] OR preeclamp*[tiab] OR "Hypertension, Pregnancy-Induced"[MeSH] OR Eclamp*[tiab] OR "Blood Pressure"[MeSH:NoExp] OR "high blood pressure"[tiab]
#3	Diabetes	("Diabetes Mellitus"[Mesh:NoExp] OR "Prediabetic State"[Mesh] OR "prediabet*"[tiab] OR "pre diabet*"[tiab] OR "Insulin Resistance"[Mesh] OR "insulin resistance"[tiab] OR "insulin resistant"[tiab] OR "glucose intolerance"[tiab] OR "glucose intolerant"[tiab] OR "glucose tolerance"[tiab] OR "glucose tolerant"[tiab] OR "Glycated Hemoglobin A"[Mesh] OR "hemoglobin A1c"[tiab] OR hba1c[tiab] OR "hba 1c"[tiab] OR "haemoglobin A1c"[tiab] OR "Hyperglycemia"[Mesh] OR "hyperglycemia"[tiab] OR hyperglycaemia[tiab] OR "Hypoglycemia"[Mesh] OR "hypoglycemia"[tiab] OR hypoglycaemia[tiab] OR ((impaired[tiab] OR glucose[tiab]) AND fasting[tiab]) OR "blood glucose"[MeSH] OR "blood glucose"[tiab] OR glycaemi*[tiab] OR "blood sugar"[tiab] OR "glycemi*"[tiab] OR dysglycaemi*[tiab] OR hyperinsulinism[MeSH] OR hyperinsulin*[tiab] OR "Diabetes, Gestational"[Mesh] OR (gestation*[tiab] AND diabet*[tiab]) OR ("Maternal Nutritional Physiological Phenomena"[Mesh] AND diabet*[tiab]))
#4	#2 OR #3	
#5	Pregnancy	Pregnancy[Mesh] OR "Pregnancy Complications"[Mesh] OR "Maternal Exposure"[Mesh] OR "Pregnant Women"[Mesh] OR "Prenatal Exposure Delayed Effects"[Mesh]OR pregnan*[tiab] OR prepregnancy[tiab] OR prenatal[tiab] OR perinatal[tiab] OR pre-conception[tiab] OR preconception[tiab] OR peri-conception[tiab] OR "Peripartum Period"[Mesh] OR peripartum[tiab] OR peri-partum[tiab] OR gestation*[tiab] OR natal[tiab] OR antenatal[tiab]
#6	#1 AND #4 AND #5	
#7	Limits	#6 NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh])) NOT (editorial[ptyp] OR comment[ptyp] OR commentary[tiab] OR news[ptyp] OR letter[ptyp] OR review[ptyp] OR systematic review[ptyp] OR systematic review[ti] OR meta-analysis[ptyp] OR meta-analysis[ti] OR meta-analyses[ti] OR protocol[ti] OR protocols[ti] OR retracted publication[ptyp] OR retraction of publication[ptyp] OR retraction of publication[tiab] OR retraction notice[ti] OR "retracted publication"[ti] OR "Congress"[Publication Type] OR "Consensus Development Conference "[Publication Type] OR "conference abstract*"[tiab] OR "conference proceeding*"[tiab] OR "conference paper*"[tiab] OR "practice guideline"[ptyp] OR "practice guideline"[ti])
		Language: English
		Publication Date: Jan 1, 2017-Oct 21, 2019

Database: Embase

Provider: Elsevier Date(s) Searched: February 23, 2022 Dates Covered: January 1, 2017-October 21, 2019

Table A 5. Search for Embase (Search A)

Search #	Concept	String
#1	Dietary Patterns	'feeding behavior'/de OR 'mediterranean diet'/exp OR 'dash diet'/exp OR 'gluten free diet'/exp OR 'paleolithic diet'/de OR 'vegetarian diet'/exp OR 'healthy diet'/exp OR 'western diet'/de OR 'low carbohydrate diet'/exp OR 'low fat diet'/de OR 'lipid diet'/exp OR 'protein restriction'/exp OR 'sodium restriction'/exp OR 'nordic diet'/de OR 'protein diet'/exp
		OR 'dietary pattern*':ab,ti OR 'diet pattern*':ab,ti OR 'eating pattern*':ab,ti OR 'food pattern*':ab,ti OR 'diet quality':ab,ti OR 'dietary quality':ab,ti OR 'diet variety':ab,ti OR 'dietary variety':ab,ti OR 'varied diet':ab,ti OR 'dietary guideline*':ab,ti OR 'dietary recommendation*':ab,ti OR 'dietary intake*':ab,ti OR 'eating style*':ab,ti OR 'Mediterranean Diet*':ab,ti OR 'Dietary Approaches To Stop Hypertension Diet*':ab,ti OR 'DASH diet*':ab,ti OR 'Gluten Free diet*':ab,ti OR 'prudent diet*':ab,ti OR 'Paleolithic Diet*':ab,ti OR 'vegetarian diet*':ab,ti OR 'vegan diet*':ab,ti OR 'healthy diet*':ab,ti OR 'plant based diet*':ab,ti OR 'western diet*':ab,ti OR 'Nordic Diet*':ab,ti OR 'Okinawan Diet*':ab,ti OR 'high-fat diet*':ab,ti OR 'low fat diet*':ab,ti OR 'diet quality score*':ab,ti OR 'low salt diet*':ab,ti OR 'diet score*':ab,ti OR 'diet index*':ab,ti OR 'dietary index*':ab,ti OR 'GR kidmed:ab,ti OR 'diet index*':ab,ti OR 'healthy eating index':ab,ti OR ('guideline adherence*' AND (diet OR dietary OR food OR beverage* OR nutrition*)):ab,ti
#2	Hypertension	'hypertension'/de OR 'maternal hypertension'/exp OR 'blood pressure'/de OR hypertensi*:ab,ti OR 'pre-eclamp*':ab,ti OR preeclamp*:ab,ti OR eclamp*:ab,ti OR 'high blood pressure':ab,ti
#3	Diabetes	 'Diabetes Mellitus'/de OR 'diabetic obesity'/exp OR 'impaired glucose tolerance'/exp OR 'insulin resistance'/exp OR 'Hypoglycemia'/exp OR 'glucose blood level'/exp OR 'hyperinsulinism'/exp OR 'pregnancy diabetes mellitus'/exp OR 'prediabet*':ab,ti OR 'pre diabet*':ab,ti OR 'insulin resistance':ab,ti OR 'insulin resistant':ab,ti OR 'glucose intolerance':ab,ti OR 'glucose intolerant':ab,ti OR 'glucose tolerance':ab,ti OR 'glucose tolerant':ab,ti OR 'hemoglobin A1c':ab,ti OR 'hba1c':ab,ti OR 'hba1c':ab,ti OR 'haemoglobin A1c':ab,ti OR 'hyperglycemia':ab,ti OR 'hyperglycaemia':ab,ti OR 'hypoglycemia':ab,ti OR 'hypoglycaemia':ab,ti OR (('impaired':ab,ti OR 'glucose':ab,ti) AND 'fasting':ab,ti) OR 'blood glucose':ab,ti OR glycaemi*:ab,ti OR 'blood sugar':ab,ti OR 'glycemi*:ab,ti OR dysglycaemi*:ab,ti OR hyperinsulin*:ab,ti OR ('gestation*':ab,ti AND 'diabet*':ab,ti)

Search #	Concept	String
#4	#2 OR #3	
#5	Pregnancy	'Pregnancy'/exp OR 'Pregnancy Complications'/exp OR 'Maternal Exposure'/exp OR 'perinatal exposure'/exp OR 'Pregnant Woman'/exp OR 'Perinatal Period'/exp OR 'Prenatal exposure'/exp OR pregnan*:ab,ti OR prepregnancy:ab,ti OR prenatal:ab,ti OR perinatal:ab,ti OR 'pre- conception':ab,ti OR preconception:ab,ti OR 'peri-conception':ab,ti OR periconception:ab,ti OR peripartum:ab,ti OR 'peri-partum':ab,ti OR gestation*:ab,ti OR natal:ab,ti OR antenatal:ab,ti
#6	#1 AND #4 AND #5	
#7	Limits	#6 AND ([article]/lim OR [article in press]/lim) NOT ([animals]/lim NOT ([animals]/lim AND [humans]/lim)) AND [english]/lim NOT ([conference abstract]/lim OR [conference paper]/lim OR [conference review]/lim OR [editorial]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim OR 'retraction of publication':ab,ti OR 'retraction notice':ti OR 'retracted publication':ab,ti OR [review]/lim OR [systematic review]/lim OR [meta analysis]/lim OR 'practice guideline':ti) AND [2017-2019]/py

Database: Cochrane Central Register of Controlled Trials (CENTRAL)

Provider: John Wiley & Sons Date(s) Searched: February 23, 2022 Dates Covered: January 1, 2017- October 21, 2019

Table A 6. Search for Cochrane CENTRAL (Search A)

Search #	Concept	String
#1	Dietary Patterns	 [mh "Diet, Mediterranean"] OR [mh "Dietary Approaches To Stop Hypertension"] OR [mh "Diet, Gluten-Free"] OR [mh "Diet, Paleolithic"] OR [mh "Diet, Vegetarian"] OR [mh "Diet, Healthy"] OR [mh "Diet, Western"] OR [mh "Diet, Fat-Restricted"] OR [mh "Diet, High-Fat"] OR [mh "Diet, Sodium-Restricted"] OR [mh "Guideline Adherence"] OR ("dietary pattern*" OR "diet pattern*" OR "eating pattern*" OR "food pattern*" OR "diet quality" OR "dietary quality" OR "diet variety" OR "dietary variety" OR "varied diet" OR "dietary guideline*" OR "dietary recommendation*" OR "dietary intake*" OR "eating style*" OR "Mediterranean Diet*" OR "Dietary Approaches To Stop Hypertension Diet*" OR "DASH diet*" OR "Gluten Free diet*" OR "prudent diet*" OR "Paleolithic Diet*" OR "Okinawan diet" OR "vegetarian diet*" OR "vegan diet*" OR "healthy diet*" OR "plant based diet*" OR "low-sodium diet*" OR "low salt diet*" OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR kidmed OR "diet index*" OR "dietary index*" OR "food score*" OR MedDietScore OR "healthy eating index"):ti,ab,kw
		OR ("guideline adherence*" AND (diet OR dietary OR food OR beverage* OR nutrition*)):ti,ab,kw

Search #	Concept	String
#2	Hypertension	[mh ^"Blood Pressure"] OR [mh "Hypertension"] OR [mh "Hypertension, Pregnancy-Induced"]
		OR (hypertensi* OR "Pre-Eclamp*" OR preeclamp* OR Eclamp* OR "high blood pressure"):ti,ab,kw
#3	Diabetes	[mh ^"Diabetes Mellitus"] OR [mh "Prediabetic State"] OR [mh "Insulin Resistance"] OR [mh "Hyperglycemia"] OR [mh "Glycated Hemoglobin A"] OR [mh "Hypoglycemia"] OR [mh "blood glucose"] OR [mh hyperinsulinism] OR [mh "Diabetes, Gestational"]
		OR ("prediabet*" OR "pre diabet*" OR "insulin resistance" OR "insulin resistant" OR "glucose intolerance" OR "glucose intolerant" OR "glucose tolerance" OR "glucose tolerant" OR "hemoglobin A1c" OR "hba1c" OR "hba 1c" OR "haemoglobin A1c" OR "hyperglycemia" OR hyperglycaemia OR "hypoglycemia" OR "hypoglycaemia" OR ((impaired OR glucose) AND fasting) OR "blood glucose" OR "plasma glucose" OR "serum glucose" OR "glycemi*" OR glycaemi* OR "blood sugar" OR dysglycemi* OR dysglycaemi* OR hyperinsulin* OR (gestation* AND diabet*)):ti,ab,kw
#4	#2 OR #3	
	Pregnancy	[mh Pregnancy] OR [mh "Pregnancy Complications"] OR [mh "Maternal Exposure"] OR [mh "Pregnant Women"] OR [mh "Peripartum Period"] OR [mh "Prenatal Exposure Delayed Effects"] OR (pregnan* OR prepregnancy OR prenatal OR perinatal OR "pre-conception" OR preconception OR "peri- conception" OR periconception OR peripartum OR "peri-partum" OR gestation* OR natal OR antenatal):ti,ab,kw
#5	#1 AND #4 AND #5	In trials, word variations searched, year first published 2017-2019

Database: CINAHL

Provider: EBSCO Date(s) Searched: February 23, 2022 Dates Covered: January 1, 2017-October 21, 2019

Table A 7. Search for CINAHL (Search A)

Search #	Concept	String
#1	Dietary Patterns	(MH "Mediterranean Diet") OR (MH "DASH Diet") OR (MH "Diet, Gluten- Free") OR (MH "Diet, Paleolithic") OR (MH "Vegetarianism") OR (MH "Diet, Western") OR (MH "Diet, Fat-Restricted") OR (MH "Diet, Sodium- Restricted") OR (MH "Restricted Diet") OR (MH "Diet, High Protein") OR (MH "Diet, Nordic") OR (MH "Plant-Based Diet") OR (MH "Guideline Adherence")
		OR (TI "dietary pattern*" OR "diet pattern*" OR "eating pattern*" OR "food pattern*" OR "diet quality" OR "dietary quality" OR "diet variety" OR "dietary variety" OR "varied diet" OR "dietary guideline*" OR "dietary recommendation*" OR "dietary intake*" OR "eating style*" OR "Mediterranean Diet*" OR "Dietary Approaches To Stop Hypertension Diet*" OR "DASH diet*" OR "Gluten Free diet*" OR "prudent diet*" OR

Search #	Concept	String	
		"Paleolithic Diet*" OR "Okinawan diet" OR "vegetarian diet*" OR "vegan diet*" OR "healthy diet*" OR "plant based diet*" OR "western diet*" OR "Nordic Diet*" OR "high-fat diet*" OR "low fat diet*" OR "low-sodium diet*" OR "low salt diet*" OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR kidmed OR "diet index*" OR "dietary index*" OR "food score*" OR MedDietScore OR "healthy eating index") OR (AB "dietary pattern*" OR "diet pattern*" OR "eating pattern*" OR "food pattern*" OR "diet quality" OR "dietary quality" OR "diet variety" OR "dietary variety" OR "varied diet" OR "dietary guideline*" OR "dietary recommendation*" OR "dietary intake*" OR "eating style*" OR "Mediterranean Diet*" OR "Dietary Approaches To Stop Hypertension Diet*" OR "DASH diet*" OR "Gluten Free diet*" OR "prudent diet*" OR "Paleolithic Diet*" OR "Okinawan diet" OR "vegetarian diet*" OR "vegan diet*" OR "healthy diet*" OR "plant based diet*" OR "low-sodium diet*" OR "Nordic Diet*" OR "high-fat diet*" OR "low fat diet*" OR "low-sodium diet*" OR "low salt diet*" OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR "diet score OR "healthy eating index") OR TI ("guideline adherence*" AND (diet OR dietary OR food OR	
		beverage* OR nutrition*) OR AB ("guideline adherence*" AND (diet OR dietary OR food OR beverage* OR nutrition*))	
#2	Hypertension	(MH "Blood Pressure") OR (MH Hypertension) OR (TI hypertensi* OR "Pre-Eclamp*" OR preeclamp* OR Eclamp* OR "high blood pressure") OR (AB hypertensi* OR "Pre-Eclamp*" OR preeclamp* OR Eclamp* OR "high blood pressure")	
#3	Diabetes	(MH "Diabetes Mellitus") OR (MH "Diabetes Mellitus, Gestational") OR (MH "Prediabetic State") OR (MH "Insulin Resistance+") OR (MH "Hyperglycemia+") OR (MH "Hemoglobin A, Glycosylated") OR (MH "Hypoglycemia+") OR (MH "blood glucose") OR (MH "hyperinsulinism+") OR (OR "prediabet*" OR "pre diabet*" OR "insulin resistance" OR "insulin resistant" OR "glucose intolerance" OR "glucose intolerant" OR "glucose	
		tolerance" OR "glucose tolerant" OR "hemoglobin A1c" OR "hba1c" OR "hba 1c" OR "haemoglobin A1c" OR "hyperglycemia" OR hyperglycaemia OR "hypoglycemia" OR "hypoglycaemia" OR ((impaired OR glucose) AND fasting) OR "blood glucose" OR "plasma glucose" OR "serum glucose" OR "glycemi*" OR glycaemi* OR "blood sugar" OR dysglycemi* OR dysglycaemi* OR hyperinsulin* OR (gestation* AND diabet*)) OR ("prediabet*" OR "pre diabet*" OR "insulin resistance" OR "insulin resistant" OR "glucose intolerance" OR "glucose intolerant" OR "glucose tolerance" OR "glucose tolerant" OR "hemoglobin A1c" OR "hba1c" OR "hba 1c" OR "haemoglobin A1c" OR "hyperglycemia" OR hyperglycaemia OR "hypoglycemia" OR "hypoglycaemia" OR ((impaired OR glucose) AND fasting) OR "blood glucose" OR "plasma glucose" OR "serum glucose" OR "glycemi*" OR glycaemi* OR "blood sugar" OR dysglycemi* OR dysglycaemi* OR hyperinsulin* OR (gestation* AND diabet*)	
#4	#2 OR #3		
#5	Pregnancy	(MH "Pregnancy+") OR (MH "Pregnancy Complications+") OR (MH "Maternal Exposure") OR (MH "Prenatal Exposure Delayed Effects") OR (MH "Expectant Mothers") OR (TI pregnan* OR prepregnancy OR prenatal OR perinatal OR "pre-conception" OR preconception OR "peri- conception" OR periconception OR peripartum OR "peri-partum" OR	

Search #	Concept	String
		gestation* OR natal OR antenatal) OR (AB pregnan* OR prepregnancy OR prenatal OR perinatal OR "pre-conception" OR preconception OR "peri-conception" OR periconception OR peripartum OR "peri-partum" OR gestation* OR natal OR antenatal)
#6	#1 AND #4 AND #5	
#7	Limits	#6 NOT ((MH "Animals+") OR (MH "Animal Studies")) NOT ((MH "Literature Review") OR (MH "Meta Analysis") OR (MH "Systematic Review") OR (MH "News") OR (MH "Retracted Publication") OR (MH "Retraction of Publication) English, Apply equivalent subjects Published Date: January 2017 – October 2019

Search B:

This search encompasses a wider range of terms than Search A because it is also used in the systematic review that examines the relationship between dietary patterns and cardiovascular disease. The search was first run on October 5, 2021 and was then periodically run using NESR's continuous evidence monitoring methods^{*} through May 2023.

Database: PubMed

Provider: U.S. National Library of Medicine

Date(s) Searched: October 5, 2021 (initial search); October 5, 2021 – May 31, 2023 (continuous evidence monitoring)

Dates Covered: October 21, 2019 - May 31, 2023

Table A 8. Search for PubMed (Search B)

Search #	Concept	String
#1	Cardiovascular diseases	"Cardiovascular Diseases"[Mesh:NoExp] OR "cardiovascular disease*"[tiab] OR "coronary artery disease"[tiab] OR "heart disease*"[tiab] OR "Heart Failure"[Mesh] OR "heart failure"[tiab] OR "myocardial infarction*"[tiab] OR "Myocardial Ischemia"[Mesh] OR "myocardial ischemia*"[tiab] OR "Stroke"[Mesh] OR "stroke*"[tiab] OR "angina"[tiab] OR "heart attack*"[tiab] OR "Venous Thrombosis"[Mesh] OR "venous thrombosis"[tiab] OR "hypertension"[tiab] OR Blood Pressure[Mesh:NoExp] OR "high blood pressure"[tiab] OR "Lipids/blood"[Mesh] OR "Cholesterol, HDL"[Mesh] OR "HDL cholesterol"[tiab] OR "total cholesterol"[tiab] OR "blood cholesterol"[tiab] OR "Triglycerides"[Mesh] OR "triglycerides"[tiab] OR "Hypertension"[Mesh:NoExp] OR hypertensi*[tiab] OR

^{*} USDA Nutrition Evidence Systematic Review Branch. Chapter 10: Continuous Evidence Monitoring. In: *USDA Nutrition Evidence Systematic Review: Methodology Manual*. February 2023. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: <u>https://nesr.usda.gov/methodology-overview</u>.

Search #	Concept	String	
		Pregnancy-Induced"[Mesh] OR "Pre-Eclamp*"[tiab] OR preeclamp*[tiab] OR Eclamp*[tiab]	
#2	Dietary Patterns	("dietary pattern*"[tiab] OR "diet pattern*"[tiab] OR "eating pattern*"[tiab] OR "food pattern*"[tiab] OR "diet quality"[tiab] OR "dietary quality"[tiab] OR "diet variety"[tiab] OR "dietary variety"[tiab] OR "varied diet"[tiab] OR "dietary guideline*"[tiab] OR "dietary recommendation*"[tiab] OR "dietary intake*"[tiab] OR "eating style*"[tiab] OR "Diet, Mediterranean"[Mesh] OR "Mediterranean Diet*"[tiab] OR "Dietary Approaches To Stop Hypertension"[Mesh] OR "Dietary Approaches To Stop Hypertension Diet*"[tiab] OR "Dietary Approaches To Stop Hypertension Diet*"[tiab] OR "DASH diet*"[tiab] OR "Diet, Gluten-Free"[Mesh] OR "Gluten Free diet*"[tiab] OR "Prudent diet*"[tiab] OR "Diet, Paleolithic"[Mesh] OR "Paleolithic Diet*"[tiab] OR "Diet, Vegetarian"[Mesh] OR "vegetarian diet*"[tiab] OR "Vegan diet*"[tiab] OR "Diet, Healthy"[Mesh] OR "healthy diet*"[tiab] OR "plant based diet*"[tiab] OR "Diet, High-Fat"[Mesh] OR "Diet, Fat- Restricted"[Mesh] OR "Diet, High-Fat"[Mesh] OR "high-fat diet*"[tiab] OR "low fat diet*"[tiab] OR "Diet, Sodium-Restricted"[Mesh] OR "low-sodium diet*"[tiab] OR "low salt diet*"[tiab] OR (("Guideline Adherence"[Mesh] OR "guideline adherence*"[tiab] OR (("Guideline Adherence"[Mesh] OR "guideline adherence*"[tiab] OR nutrition*[tiab]) OR dietary[tiab] OR food[tiab] OR beverage*[tiab] OR nutrition*[tiab]) OR "diet score*"[tiab] OR "diet quality score*"[tiab] OR "diet quality index*"[tiab] OR	
#3		#1 AND #2	
#4	Limiters	 #3 NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh])) NOT (editorial[ptyp] OR comment[ptyp] OR commentary[tiab] OR news[ptyp] OR letter[ptyp] OR review[ptyp] OR systematic review[ptyp] OR systematic review[ti] OR meta-analysis[ptyp] OR meta-analysis[ti] OR meta-analyses[ti] OR protocol[ti] OR protocols[ti] OR retracted publication[ptyp] OR retraction of publication[ptyp] OR retraction of publication[tiab] OR retraction notice[ti] OR "retracted publication"[ti] OR "Congress"[Publication Type] OR "Consensus Development Conference"[Publication Type] OR "conference abstract*"[tiab] OR "conference proceeding*"[tiab] OR "conference paper*"[tiab] OR "practice guideline"[ptyp] OR "practice guideline"[ti]) Language: English Publication Date: Oct 21, 2019- May 31, 2023 	

Database: Embase

Provider: U.S. National Library of Medicine

Date(s) Searched: October 5, 2021 (initial search); October 5, 2021 – May 31, 2023 (continuous evidence monitoring)

Dates Covered: October 21, 2019 - May 31, 2023

Table A 9. Search for Embase (Search B)

Search #	Concept	String
#1	Cardiovascular diseases	'Cardiovascular Disease'/de OR 'Heart Failure'/exp OR 'heart muscle ischemia'/de OR 'cerebrovascular accident'/exp OR 'vein thrombosis'/exp OR 'Blood Pressure'/de OR ('Lipids'/exp AND 'blood':ab,ti) OR 'high density lipoprotein cholesterol'/exp OR 'low density lipoprotein cholesterol'/exp OR 'hypertension'/exp OR 'cardiovascular disease*':ab,ti OR 'coronary artery disease':ab,ti OR 'heart disease*':ab,ti OR 'heart failure':ab,ti OR 'myocardial infarction*':ab,ti OR 'myocardial ischemia*':ab,ti OR 'stroke*':ab,ti OR 'angina':ab,ti OR 'heart attack*':ab,ti OR 'venous thrombosis':ab,ti OR 'hypertension':ab,ti OR 'high blood pressure':ab,ti OR 'HDL cholesterol':ab,ti OR 'LDL cholesterol':ab,ti OR 'total cholesterol':ab,ti OR 'blood cholesterol':ab,ti OR 'triglycerides':ab,ti OR hypertensi*:ab,ti OR 'Pre-Eclamp*':ab,ti OR preeclamp*:ab,ti OR Eclamp*:ab,ti
#2	Dietary Patterns	'feeding behavior'/de OR 'mediterranean diet'/exp OR 'dash diet'/exp OR 'gluten free diet'/exp OR 'paleolithic diet'/de OR 'vegetarian diet'/exp OR 'healthy diet'/exp OR 'western diet'/de OR 'low carbohydrate diet'/exp OR 'low fat diet'/de OR 'lipid diet'/exp OR 'protein restriction'/exp OR 'sodium restriction'/exp OR 'nordic diet'/de OR 'protein diet'/exp OR 'dietary pattern*':ab,ti OR 'diet pattern*':ab,ti OR 'eating pattern*':ab,ti OR 'food pattern*':ab,ti OR 'diet quality':ab,ti OR 'dietary quality':ab,ti OR 'food pattern*':ab,ti OR 'dietary variety':ab,ti OR 'dietary quality':ab,ti OR 'diet variety':ab,ti OR 'dietary variety':ab,ti OR 'dietary quality':ab,ti OR 'dietary guideline*':ab,ti OR 'dietary recommendation*':ab,ti OR 'dietary intake*':ab,ti OR 'eating style*':ab,ti OR 'Mediterranean Diet*':ab,ti OR 'Dietary Approaches To Stop Hypertension Diet*':ab,ti OR 'DASH diet*':ab,ti OR 'Gluten Free diet*':ab,ti OR 'prudent diet*':ab,ti OR 'Paleolithic Diet*':ab,ti OR 'plant based diet*':ab,ti OR 'western diet*':ab,ti OR 'Nordic Diet*':ab,ti OR 'Okinawan Diet*':ab,ti OR 'high-fat diet*':ab,ti OR 'low fat diet*':ab,ti OR 'low-sodium diet*':ab,ti OR 'low salt diet*':ab,ti OR 'diet score*':ab,ti OR 'diet quality score*':ab,ti OR 'dietary index*':ab,ti OR 'food score*':ab,ti OR 'diet index*':ab,ti OR 'dietary index*':ab,ti OR 'food score*':ab,ti OR MedDietScore:ab,ti OR 'healthy eating index':ab,ti OR ('guideline adherence*' AND (diet OR dietary OR food OR beverage* OR nutrition*)):ab,ti
#3		#1 AND #2
#4	Limiters	#3 AND ([article]/lim OR [article in press]/lim) NOT ([animals]/lim NOT ([animals]/lim AND [humans]/lim)) AND [english]/lim NOT ([conference abstract]/lim OR [conference paper]/lim OR [conference review]/lim OR [editorial]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim OR 'retraction of publication':ab,ti OR 'retraction notice':ti OR 'retracted publication':ab,ti OR [review]/lim OR [systematic review]/lim OR [meta analysis]/lim OR 'practice guideline':ti) AND [2019-2023]/py

Database: Cochrane Central Register of Controlled Trials (CENTRAL) Provider: U.S. National Library of Medicine

Date(s) Searched: October 5, 2021 (initial search); October 5, 2021 – May 31, 2023 (continuous evidence monitoring) Dates Covered: October 21, 2019 – May 31, 2023

Table A 10	. Search for	[·] Cochrane	CENTRAL	(Search B)
------------	--------------	-----------------------	---------	------------

Search #	Concept	String
#1	Cardiovascular Diseases	[mh ^"Cardiovascular Diseases"] OR [mh "Heart Failure"] OR [mh "Myocardial Ischemia"] OR [mh "Stroke"] OR [mh "Venous Thrombosis"] OR [mh ^"Blood Pressure"] OR [mh "Lipids"/BL] OR [mh "Cholesterol, HDL"] OR [mh "Cholesterol, LDL"] OR [mh "Triglycerides"] OR [mh "Hypertension"] OR [mh "Hypertension, Pregnancy-Induced"] OR ("cardiovascular disease*" OR "coronary artery disease" OR "heart disease*" OR "heart failure" OR "myocardial infarction*" OR "myocardial ischemia*" OR "stroke*" OR "angina" OR "heart attack*" OR "venous thrombosis" OR "hypertension" OR "high blood pressure" OR "HDL cholesterol" OR "LDL cholesterol" OR "total cholesterol" OR "blood cholesterol" OR "triglycerides" OR hypertensi* OR "Pre-Eclamp*" OR preeclamp* OR Eclamp*):ti,ab,kw
#2	Dietary Patterns	[mh "Diet, Mediterranean"] OR [mh "Dietary Approaches To Stop Hypertension"] OR [mh "Diet, Gluten-Free"] OR [mh "Diet, Paleolithic"] OR [mh "Diet, Vegetarian"] OR [mh "Diet, Healthy"] OR [mh "Diet, Western"] OR [mh "Diet, Fat-Restricted"] OR [mh "Diet, High-Fat"] OR [mh "Diet, Sodium-Restricted"] OR [mh "Guideline Adherence"] OR ("dietary pattern" OR "dietary patterns" OR "diet patterns" OR "diet patterns" OR "eating pattern" OR "eating patterns" OR "food pattern" OR "food patterns" OR "diet quality" OR "dietary quality" OR "diet variety" OR "dietary variety" OR "varied diet" OR "dietary guideline" OR "dietary guidelines" OR "dietary recommendation" OR "dietary recommendations" OR "dietary intake" OR "dietary intakes" OR "eating style" OR "eating styles" OR "Mediterranean Diet" OR "Mediterranean Diets" OR "Dietary Approaches To Stop Hypertension Diet" OR "Dietary Approaches To Stop Hypertension Diets" OR "Paleolithic Diets" OR "rudent diets" OR "Paleolithic Diet" OR "Paleolithic Diets" OR "prudent diets" OR "Paleolithic Diet" OR "Paleolithic Diets" OR "prudent diets" OR "Paleolithic Diet" OR "Vegan diets" OR "healthy diet" OR "healthy diets" OR "plant based diet" OR "plant based diets" OR "Western diet" OR "Okinawan Diets" OR "high-fat diet" OR "high-fat diets" OR "low salt diet" OR "low salt diets" OR "diet scores" OR "diet scores" OR "diet quality indexes" OR "low-sodium diet" OR "diet avaited oR "diet quality indexes" OR "diet quality indices" OR "diet quality indexes" OR "diet quality indices" OR "diet quality indexes" OR "diet indices" OR "diet avaited OR "diet avaited "diets" OR "diet score" OR "diet oR "diet avaited "diet indices" OR "diet avaited OR "diet avaited indexes" OR "diet indices" OR "dietary index" OR "diet avaited indexes" OR "diet indices" OR "diet avaited OR "diet avaity indexes" OR "diet indices" OR "diet avaited OR "diet avaity indexes" OR "healthy eating index" OR "healthy eating indexes" OR "healthy eating indices"):ti,ab,kw
#3		#1 AND #2

Search #	Concept	String
		In Trials (Word variations have been searched); year first published 2019-2023

Database: CINAHL

Provider: U.S. National Library of Medicine

Date(s) Searched: October 5, 2021 (initial search); October 5, 2021 – May 31, 2023 (continuous evidence monitoring)

Dates Covered: October 21, 2019 – May 31, 2023

Table A 11. Search for CINAHL (Search B)

Search #	Concept	String
#1	Cardiovascular diseases	(MH "Cardiovascular Diseases") OR (MH "Heart Failure+") OR (MH "Myocardial Ischemia+") OR (MH "Stroke+") OR (MH "Venous Thrombosis+") OR (MH "Blood Pressure") OR (MH "Lipids+/BL") OR (MH "Lipoproteins, HDL Cholesterol") OR (MH "Lipoproteins, LDL Cholesterol") OR (MH Triglycerides) OR (MH Hypertension) OR (TI "cardiovascular disease*" OR "coronary artery disease" OR "heart disease*" OR "heart failure" OR "myocardial infarction*" OR "myocardial ischemia*" OR "stroke*" OR "angina" OR "heart attack*" OR "venous thrombosis" OR "hypertension" OR "high blood pressure" OR "HDL cholesterol" OR "LDL cholesterol" OR "total cholesterol" OR "blood cholesterol" OR "triglycerides" OR hypertensi* OR "Pre-Eclamp*" OR preeclamp* OR Eclamp*) OR (AB "cardiovascular disease*" OR "myocardial infarction*" OR "myocardial ischemia*" OR "stroke*" OR "angina" OR "heart attack*" OR "heart disease*" OR "heart disease" OR "heart disease" OR "heart failure" OR "holesterol" OR "triglycerides" OR hypertensi* OR "Pre-Eclamp*" OR preeclamp* OR Eclamp*) OR (AB "cardiovascular disease*" OR "coronary artery disease" OR "heart disease*" OR "heart failure" OR "myocardial infarction*" OR "myocardial ischemia*" OR "stroke*" OR "angina" OR "heart attack*" OR "venous thrombosis" OR "hypertension" OR "high blood pressure" OR "HDL cholesterol" OR "LDL cholesterol" OR "high blood pressure" OR "HDL cholesterol" OR "LDL cholesterol" OR "high blood pressure" OR "HDL cholesterol" OR "LDL cholesterol" OR "total cholesterol" OR "blood cholesterol" OR "triglycerides" OR hypertensi* OR "Pre-Eclamp*" OR preeclamp* OR Eclamp*)

Search #	Concept	String
#2	Dietary Patterns	(MH "Mediterranean Diet") OR (MH "DASH Diet") OR (MH "Diet, Gluten- Free") OR (MH "Diet, Paleolithic") OR (MH "Vegetarianism") OR (MH "Diet, Western") OR (MH "Diet, Fat-Restricted") OR (MH "Diet, Sodium- Restricted") OR (MH "Restricted Diet") OR (MH "Diet, High Protein") OR (MH "Diet, Nordic") OR (MH "Plant-Based Diet")
		OR (TI "dietary pattern*" OR "diet pattern*" OR "eating pattern*" OR "food pattern*" OR "diet quality" OR "dietary quality" OR "diet variety" OR "dietary variety" OR "varied diet" OR "dietary guideline*" OR "dietary recommendation*" OR "dietary intake*" OR "eating style*" OR "Mediterranean Diet*" OR "Dietary Approaches To Stop Hypertension Diet*" OR "DASH diet*" OR "Gluten Free diet*" OR "prudent diet*" OR "Paleolithic Diet*" OR "Okinawan diet" OR "vegetarian diet*" OR "vegan diet*" OR "healthy diet*" OR "plant based diet*" OR "western diet*" OR "Nordic Diet*" OR "high-fat diet*" OR "low fat diet*" OR "low-sodium diet*" OR "low salt diet*" OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR kidmed OR "diet index*" OR "dietary index*" OR "food score*" OR MedDietScore OR "healthy eating index") OR (AB "dietary pattern*" OR "diet pattern*" OR "eating pattern*" OR "food pattern*" OR "diet quality" OR "dietary quality" OR "dietary recommendation*" OR "dietary intake*" OR "eating style*" OR "dietary variety" OR "varied diet" OR "dietary guideline*" OR "dietary recommendation*" OR "dietary intake*" OR "eating style*" OR "Mediterranean Diet*" OR "Gluten Free diet*" OR "prudent diet*" OR "Paleolithic Diet*" OR "Okinawan diet" OR "vegetarian diet*" OR "vegan diet*" OR "hasH diet*" OR "plant based diet*" OR "western diet*" OR "Nordic Diet*" OR "high-fat diet*" OR "low fat diet*" OR "vestern diet*" OR "Nordic Diet*" OR "high-fat diet*" OR "low fat diet*" OR "vestern diet*" OR "Nordic Diet*" OR "high-fat diet*" OR "low fat diet*" OR "low-sodium diet*" OR "low salt diet*" OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR kidmed OR "diet index*" OR "dietary index*" OR "Nordic Diet*" OR NedDietScore OR "healthy eating index") OR ((MH "Guideline Adherence") OR (TI "guideline adherence*") OR (AB "guideline adherence*")) AND ((TI diet OR dietary OR food OR beverage* OR nutrition*) OR (AB diet OR dietary OR food OR beverage* OR nutrition*))
#3		#1 AND #2
#4	Limiters	#3 NOT ((MH "Animals+") OR (MH "Animal Studies"))
		NOT ((MH "Literature Review") OR (MH "Meta Analysis") OR (MH "Systematic Review") OR (MH "News") OR (MH "Retracted Publication") OR (MH "Retraction of Publication"))
		English, Apply equivalent subjects
		Published Date: October 2019 – September 2023

Appendix 5: Excluded articles

The existing systematic review^{*} for this question included 8 articles. However, after applying the inclusion and exclusion criteria established for the update to that review, only 6 remained eligible for inclusion. The following articles were excluded from the existing systematic review due to updated life stage eligibility criteria:

- Schoenaker DA, Soedamah-Muthu SS, Mishra GD. Quantifying the mediating effect of body mass index on the relation between a Mediterranean diet and development of maternal pregnancy complications: the Australian Longitudinal Study on Women's Health. Am J Clin Nutr 2016;104(3):638-45.
- 2. Schoenaker DA, Soedamah-Muthu SS, Callaway LK, Mishra GD. Prepregnancy dietary patterns and risk of developing hypertensive disorders of pregnancy: results from the Australian Longitudinal Study on Women's Health. Am J Clin Nutr 2015;102(1):94-101.

The following tables list the articles excluded after full-text screening for the updated systematic review literature search (**Appendix 4**). Articles excluded from Search A are in **Table A 2** and articles excluded from Search B are in **Table A 3**. At least one reason for exclusion is provided for each article, though this may not reflect all possible reasons. Information about articles excluded after title and abstract screening is available upon request.

Table A 12. Search A articles excluded after full text screening

	Citation	Rationale
1	Alamolhoda, SH, Simbar, M, Mirmiran, P, Mirabi, P. The effectiveness of low trans-fatty acids dietary pattern in pregnancy and the risk of gestational diabetes mellitus. Caspian J Intern Med. 2019. 10:197-204. doi:10.22088/cjim.10.2.197	Intervention/Exposure
2	Allman, BR, Diaz Fuentes, E., Williams, KD, Turner, DE, Andres, A, Børsheim, E. Obesity Status Affects the Relationship Between Protein Intake and Insulin Sensitivity in Late Pregnancy. Nutrients. 2019. 11:2190. doi:10.3390/nu11092190	Intervention/Exposure
3	Anand, SS, Gupta, M, Teo, KK, Schulze, KM, Desai, D, Abdalla, N, Zulyniak, M, de Souza, R, Wahi, G, Shaikh, M, Beyene, J, de Villa, E, Morrison, K, McDonald, SD, Gerstein, H. Causes and consequences of gestational diabetes in South Asians living in Canada: results from a prospective cohort study. CMAJ Open. 2017. 5:E604-e611. doi:10.9778/cmajo.20170027	Study Design
4	Arredondo, A, Torres, C, Orozco, E, Pacheco, S, Huang, F, Zambrano, E, Bolaños-Jiménez, F. Socio- economic indicators, dietary patterns, and physical activity as determinants of maternal obesity in middle-income countries: Evidences from a cohort study in Mexico. International Journal of Health Planning & Management. 2019. 34:e713-e725. doi:10.1002/hpm.2684	Outcome; Comparator
5	Arvizu, M, Afeiche, MC, Hansen, S, Halldorsson, TF, Olsen, SF, Chavarro, JE. Fat intake during pregnancy and risk of preeclampsia: a prospective cohort study in Denmark. Eur J Clin Nutr. 2019. 73:1040-1048. doi:10.1038/s41430-018-0290-z	Intervention/Exposure
6	Assaf-Balut, C, Garcia de la Torre, N, Durán, A, Bordiu, E, Del Valle, L, Familiar, C, Valerio, J, Jimenez, I, Herraiz, MA, Izquierdo, N, Runkle, I, de Miguel, MP, Montañez, C, Barabash, A, Cuesta, M, Rubio, MA, Calle-Pascual, AL. An Early, Universal Mediterranean Diet-Based Intervention in Pregnancy Reduces Cardiovascular Risk Factors in the "Fourth Trimester". J Clin Med. 2019. 8. doi:10.3390/jcm8091499	Study Design
7	Barabash, A, Valerio Deogracia, J, Assaf-Balut, C, Del Valle, L, De La Torre, NG, Bordiu, E, Duran, A, Fuentes, M, Ines Sr, J, Cuesta, M, Rubio, MA, Calle, AL. 193-LB: Levels of Adherence to a Mediterranean Diet and Risk of Gestational Diabetes Mellitus: Modulation Effects of MTNRB1_rs10830963, TCFTL2_rs7903146, and MC4R_rs17782313 Gene Polymorphisms. Diabetes. 2019. 68. doi:10.2337/db19-193-LB	Publication Status
8	Bartáková, V, Kuricová, K, Zlámal, F, Bělobrádková, J, Kaňková, K. Differences in food intake and genetic variability in taste receptors between Czech pregnant women with and without gestational diabetes mellitus. Eur J Nutr. 2018. 57:513-521. doi:10.1007/s00394-016-1334-6	Study Design

^{*} Raghavan R, Dreibelbis C, Kingshipp BJ, et al. Dietary Patterns before and during Pregnancy and Risk of Hypertensive Disorders of Pregnancy: A Systematic Review. April 2019. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.PB242018.SR0101

	Citation	Rationale
9	Broekhuizen, K, Simmons, D, Devlieger, R, van Assche, A, Jans, G, Galjaard, S, Corcoy, R, Adelantado, JM, Dunne, F, Desoye, G, Harreiter, J, Kautzky-Willer, A, Damm, P, Mathiesen, ER, Jensen, DM, Andersen, LL, Lapolla, A, Dalfra, MG, Bertolotto, A, Wender-Ozegowska, E, Zawiejska, A, Hill, D, Snoek, FJ, Jelsma, JGM, Bosmans, JE, van Poppel, MNM, van Dongen, JM. Cost- effectiveness of healthy eating and/or physical activity promotion in pregnant women at increased risk of gestational diabetes mellitus: economic evaluation alongside the DALI study, a European multicenter randomized controlled trial. Int J Behav Nutr Phys Act. 2018. 15:23. doi:10.1186/s12966- 018-0643-y	Intervention/Exposure
10	Bruno, R, Petrella, E, Bertarini, V, Pedrielli, G, Neri, I, Facchinetti, F. Adherence to a lifestyle programme in overweight/obese pregnant women and effect on gestational diabetes mellitus: a randomized controlled trial. Matern Child Nutr. 2017. 13. doi:10.1111/mcn.12333	Intervention/Exposure
11	Carlos, S, De La Fuente-Arrillaga, C, Bes-Rastrollo, M, Razquin, C, Rico-Campà, A, Martínez- González, MA, Ruiz-Canela, M. Mediterranean diet and health outcomes in the SUN cohort. Nutrients. 2018. 10. doi:10.3390/nu10040439	Study Design; Data Overlap
12	Carolan-Olah, M, Sayakhot, P. A randomized controlled trial of a web-based education intervention for women with gestational diabetes mellitus. Midwifery. 2019. 68:39-47. doi:10.1016/j.midw.2018.08.019	Health Status; Life Stage
13	Chen, Q, Feng, Y, Yang, H, Wu, W, Zhang, P, Wang, K, Wang, Y, Ko, J, Shen, J, Guo, L, Zhao, F, Du, W, Ru, S, Wang, S, Zhang, Y. A Vitamin Pattern Diet Is Associated with Decreased Risk of Gestational Diabetes Mellitus in Chinese Women: Results from a Case Control Study in Taiyuan, China. J Diabetes Res. 2019. 2019:5232308. doi:10.1155/2019/5232308	Study Design
14	Chen, X, de Seymour, JV, Han, TL, Xia, Y, Chen, C, Zhang, T, Zhang, H, Baker, PN. Metabolomic biomarkers and novel dietary factors associated with gestational diabetes in China. Metabolomics. 2018. 14:149. doi:10.1007/s11306-018-1445-6	Study Design
15	Compher, C, Elovitz, MA, Parry, S, Chittams, J, Griffith, CJ. 330: Diet pattern is associated with an increased risk of hypertensive disorders of pregnancy. American Journal of Obstetrics & Gynecology. 2018. 218:S206-S206. doi:10.1016/j.ajog.2017.10.266	Publication Status
16	de la Torre, NG, Assaf-Balut, C, Jiménez Varas, I, Del Valle, L, Durán, A, Fuentes, M, Del Prado, N, Bordiú, E, Valerio, JJ, Herraiz, MA, Izquierdo, N, Torrejón, MJ, Cuadrado, MA, de Miguel, P, Familiar, C, Runkle, I, Barabash, A, Rubio, MA, Calle-Pascual, AL. Effectiveness of Following Mediterranean Diet Recommendations in the Real World in the Incidence of Gestational Diabetes Mellitus (GDM) and Adverse Maternal-Foetal Outcomes: A Prospective, Universal, Interventional Study with a Single Group. The St Carlos Study. Nutrients. 2019. 11. doi:10.3390/nu11061210	Comparator
17	Deniz, ÇD, Özler, S, Sayın, FK, Eryılmaz, MA. Associations between night eating syndrome and metabolic parameters in pregnant women. Turkish Journal of Obstetrics and Gynecology. 2019. 16:107-111. doi:10.4274/tjod.galenos.2019.77864	Intervention/Exposure
18	Donazar-Ezcurra, M, Lopez-Del Burgo, C, Martinez-Gonzalez, MA, Basterra-Gortari, FJ, de Irala, J, Bes-Rastrollo, M. Pre-pregnancy adherences to empirically derived dietary patterns and gestational diabetes risk in a Mediterranean cohort: the Seguimiento Universidad de Navarra (SUN) project. Br J Nutr. 2017. 118:715-721. doi:10.1017/s0007114517002537	Life Stage
19	Donazar-Ezcurra, M, Lopez-Del Burgo, C, Martinez-Gonzalez, MA, Basterra-Gortari, FJ, de Irala, J, Bes-Rastrollo, M. Soft drink consumption and gestational diabetes risk in the SUN project. Clin Nutr. 2018. 37:638-645. doi:10.1016/j.clnu.2017.02.005	Intervention/Exposure
20	Dong, JY, Kimura, T, Ikehara, S, Cui, M, Kawanishi, Y, Yamagishi, K, Ueda, K, Iso, H. Chocolate consumption and risk of gestational diabetes mellitus: The Japan Environment and Children's Study. British Journal of Nutrition. 2019. 122:936-941. doi:10.1017/S0007114519001806	Intervention/Exposure
21	Duran, A, De La Torre, NG, Assaf-Balut, C, Del Valle, L, Ines, J, Valerio Deogracia, J, Bordiu, E, Fuentes, M, Barabash, A, Cuesta, M, Rubio, MA, Calle, AL. 194-LB: Effectiveness of Following Mediterranean Diet (MedDiet) Recommendations in the Real World in the Incidence of Gestational Diabetes Mellitus (GDM) and Adverse Maternal-Fetal Outcomes: A Prospective, Universal Interventional Study. Diabetes. 2019. 68. doi:10.2337/db19-194-LB	Publication Status
22	Elvebakk, T, Mostad, IL, Mørkved, S, Salvesen, K. Dietary Intakes and Dietary Quality during Pregnancy in Women with and without Gestational Diabetes Mellitus-A Norwegian Longitudinal Study. Nutrients. 2018. 10. doi:10.3390/nu10111811	Intervention/Exposure
23	Emond, JA, Karagas, MR, Baker, ER, Gilbert-Diamond, D. Better Diet Quality during Pregnancy Is Associated with a Reduced Likelihood of an Infant Born Small for Gestational Age: An Analysis of the Prospective New Hampshire Birth Cohort Study. J Nutr. 2018. 148:22-30. doi:10.1093/jn/nxx005	Confounders
24	Englund-Ögge, L, Brantsæter, AL, Juodakis, J, Haugen, M, Meltzer, HM, Jacobsson, B, Sengpiel, V. Associations between maternal dietary patterns and infant birth weight, small and large for gestational age in the Norwegian Mother and Child Cohort Study. Eur J Clin Nutr. 2019. 73:1270-1282. doi:10.1038/s41430-018-0356-y	Outcome

	Citation	Rationale
25	Epel, E, Laraia, B, Coleman-Phox, K, Leung, C, Vieten, C, Mellin, L, Kristeller, JL, Thomas, M, Stotland, N, Bush, N, Lustig, RH, Dallman, M, Hecht, FM, Adler, N. Effects of a Mindfulness-Based Intervention on Distress, Weight Gain, and Glucose Control for Pregnant Low-Income Women: A Quasi-Experimental Trial Using the ORBIT Model. Int J Behav Med. 2019. 26:461-473. doi:10.1007/s12529-019-09779-2	Intervention/Exposure
26	Fernández-Barrés, S, Vrijheid, M, Manzano-Salgado, CB, Valvi, D, Martínez, D, Iñiguez, C, Jimenez-Zabala, A, Riaño-Galán, I, Navarrete-Muñoz, EM, Santa-Marina, L, Tardón, A, Vioque, J, Arija, V, Sunyer, J, Romaguera, D. The Association of Mediterranean Diet during Pregnancy with Longitudinal Body Mass Index Trajectories and Cardiometabolic Risk in Early Childhood. J Pediatr. 2019. 206:119-127.e6. doi:10.1016/j.jpeds.2018.10.005	Study Design
27	Gadgil, MD, Ehrlich, SF, Zhu, Y, Brown, SD, Hedderson, MM, Crites, Y, Ferrara, A. Dietary Quality and Glycemic Control Among Women with Gestational Diabetes Mellitus. J Womens Health (Larchmt). 2019. 28:178-184. doi:10.1089/jwh.2017.6788	Health Status
28	Gicevic, S, Gaskins, AJ, Fung, TT, Rosner, B, Tobias, DK, Isanaka, S, Willett, WC. Evaluating pre- pregnancy dietary diversity vs. dietary quality scores as predictors of gestational diabetes and hypertensive disorders of pregnancy. PLoS One. 2018. 13:e0195103. doi:10.1371/journal.pone.0195103	Life Stage
29	Gnanendran, S, Porrett, J, Woods, C, Buttrose, M, Jukka, C, Hollins, J, Robson, S, de Costa, C. A randomised controlled trial of consumption of dark chocolate in pregnancy to reduce pre-eclampsia: Difficulties in recruitment, allocation and adherence. Australian & New Zealand Journal of Obstetrics & Gynaecology. 2018. 58:358-361. doi:10.1111/ajo.12694	Intervention/Exposure; Publication Status
30	Gonzalez-Nahm, S, Hoyo, C, Østbye, T, Neelon, B, Allen, C, Benjamin-Neelon, SE. Associations of maternal diet with infant adiposity at birth, 6 months and 12 months. BMJ Open. 2019. 9:e030186. doi:10.1136/bmjopen-2019-030186	Outcome
31	Goodarzi-Khoigani, M, Mazloomy Mahmoodabad, SS, Baghiani Moghadam, MH, Nadjarzadeh, A, Mardanian, F, Fallahzadeh, H, Dadkhah-Tirani, A. Prevention of Insulin Resistance by Dietary Intervention among Pregnant Mothers: A Randomized Controlled Trial. Int J Prev Med. 2017. 8:85. doi:10.4103/ijpvm.IJPVM_405_16	Intervention/Exposure
32	Goshtasebi, A, Hosseinpour-Niazi, S, Mirmiran, P, Lamyian, M, Moghaddam Banaem, L, Azizi, F. Pre-pregnancy consumption of starchy vegetables and legumes and risk of gestational diabetes mellitus among Tehranian women. Diabetes Res Clin Pract. 2018. 139:131-138. doi:10.1016/j.diabres.2018.02.033	Intervention/Exposure
33	Hamad, R, Collin, DF, Baer, RJ, Jelliffe-Pawlowski, LL. Association of Revised WIC Food Package With Perinatal and Birth Outcomes: A Quasi-Experimental Study. JAMA Pediatrics. 2019. 173:845- 852. doi:10.1001/jamapediatrics.2019.1706	Intervention/Exposure
34	Harreiter, J, Simmons, D, Desoye, G, Corcoy, R, Adelantado, JM, Devlieger, R, Galjaard, S, Damm, P, Mathiesen, ER, Jensen, DM, Andersen, LLT, Dunne, F, Lapolla, A, Dalfra, MG, Bertolotto, A, Wender-Ozegowska, E, Zawiejska, A, Mantaj, U, Hill, D, Jelsma, JGM, Snoek, FJ, Leutner, M, Lackinger, C, Worda, C, Bancher-Todesca, D, Scharnagl, H, van Poppel, MNM, Kautzky-Willer, A. Nutritional Lifestyle Intervention in Obese Pregnant Women, Including Lower Carbohydrate Intake, Is Associated With Increased Maternal Free Fatty Acids, 3-β-Hydroxybutyrate, and Fasting Glucose Concentrations: A Secondary Factorial Analysis of the European Multicenter, Randomized Controlled DALI Lifestyle Intervention Trial. Diabetes Care. 2019. 42:1380-1389. doi:10.2337/dc19-0418	Intervention/Exposure
35	Hellmuth, C, Lindsay, KL, Uhl, O, Buss, C, Wadhwa, PD, Koletzko, B, Entringer, S. Association of maternal prepregnancy BMI with metabolomic profile across gestation. Int J Obes (Lond). 2017. 41:159-169. doi:10.1038/ijo.2016.153	Outcome
36	Hezaveh, ZS, Feizy, Z, Dehghani, F, Sarbakhsh, P, Moini, A, Vafa, M. The Association between Maternal Dietary Protein Intake and Risk of Gestational Diabetes Mellitus. Int J Prev Med. 2019. 10:197. doi:10.4103/ijpvm.IJPVM_86_19	Study Design
37	Huang, L, Shang, L, Yang, W, Li, D, Qi, C, Xin, J, Wang, S, Yang, L, Zeng, L, Chung, MC. High starchy food intake may increase the risk of adverse pregnancy outcomes: a nested case-control study in the Shaanxi province of Northwestern China. BMC Pregnancy Childbirth. 2019. 19:362. doi:10.1186/s12884-019-2524-z	Outcome
38	Huang, WQ, Lu, Y, Xu, M, Huang, J, Su, YX, Zhang, CX. Excessive fruit consumption during the second trimester is associated with increased likelihood of gestational diabetes mellitus: a prospective study. Sci Rep. 2017. 7:43620. doi:10.1038/srep43620	Intervention/Exposure
39	Jiang, F, Li, Y, Xu, P, Li, J, Chen, X, Yu, H, Gao, B, Xu, B, Li, X, Chen, W. The efficacy of the Dietary Approaches to Stop Hypertension diet with respect to improving pregnancy outcomes in women with hypertensive disorders. J Hum Nutr Diet. 2019. 32:713-718. doi:10.1111/jhn.12654	Intervention/Exposure; Health Status; Outcome; Comparator
40	Kozlowska, A, Jagielska, AM, Okreglicka, KM, Dabrowski, F, Kanecki, K, Nitsch-Osuch, A, Wielgos, M, Bomba-Opon, D. Dietary macronutrients and fluid intakes in a sample of pregnant women with either gestational diabetes or type 1 diabetes mellitus, assessed in comparison with Polish nutritional guidelines. Ginekol Pol. 2018. 89:659-666. doi:10.5603/GP.a2018.0111	Study Design; Health Status

	Citation	Rationale
41	Kunath, J, Günther, J, Rauh, K, Hoffmann, J, Stecher, L, Rosenfeld, E, Kick, L, Ulm, K, Hauner, H. Effects of a lifestyle intervention during pregnancy to prevent excessive gestational weight gain in routine care - the cluster-randomised GeliS trial. BMC Med. 2019. 17:5. doi:10.1186/s12916-018-1235-z	Intervention/Exposure
42	Lamyian, M, Hosseinpour-Niazi, S, Mirmiran, P, Moghaddam Banaem, L, Goshtasebi, A, Azizi, F. Pre-Pregnancy Fast Food Consumption Is Associated with Gestational Diabetes Mellitus among Tehranian Women. Nutrients. 2017. 9. doi:10.3390/nu9030216	Intervention/Exposure
43	Lavie, M, Lavie, I, Maslovitz, S. Paleolithic diet during pregnancy-A potential beneficial effect on metabolic indices and birth weight. Eur J Obstet Gynecol Reprod Biol. 2019. 242:7-11. doi:10.1016/j.ejogrb.2019.08.013	Comparator; Data Overlap
44	Liang, Y, Gong, Y, Zhang, X, Yang, D, Zhao, D, Quan, L, Zhou, R, Bao, W, Cheng, G. Dietary Protein Intake, Meat Consumption, and Dairy Consumption in the Year Preceding Pregnancy and During Pregnancy and Their Associations With the Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study in Southwest China. Front Endocrinol (Lausanne). 2018. 9:596. doi:10.3389/fendo.2018.00596	Intervention/Exposure
45	Liang, Z, Wang, L, Liu, H, Chen, Y, Zhou, T, Heianza, Y, Leng, J, Li, W, Yang, X, Shen, Y, Gao, R, Hu, G, Qi, L. Genetic susceptibility, lifestyle intervention and glycemic changes among women with prior gestational diabetes. Clin Nutr. 2020. 39:2144-2150. doi:10.1016/j.clnu.2019.08.032	Intervention/Exposure; Country; Life Stage
46	Looman, M, Geelen, A, Samlal, RAK, Heijligenberg, R, Klein Gunnewick, JMT, Balvers, MGJ, Wijnberger, LDE, Brouwer-Brolsma, EM, Feskens, EJM. Changes in Micronutrient Intake and Status, Diet Quality and Glucose Tolerance from Preconception to the Second Trimester of Pregnancy. Nutrients. 2019. 11. doi:10.3390/nu11020460	Study Design; Life Stage
47	Marí-Sanchis, A, Díaz-Jurado, G, Basterra-Gortari, JF, de la Fuente-Arrillaga, C, Martínez-González, MA, Bes-Rastrollo, M. Association between pre-pregnancy consumption of meat, iron intake, and the risk of gestational diabetes: the SUN project. European Journal of Nutrition. 2018. 57:939-949. doi:10.1007/s00394-017-1377-3	Intervention/Exposure
48	Maslova, E, Hansen, S, Strøm, M, Halldorsson, T, Grunnet, LG, Vaag, AA, Olsen, SF. Fish Intake in Pregnancy and Offspring Metabolic Parameters at Age 9–16—Does Gestational Diabetes Modify the Risk?. Nutrients. 2018. 10:1534. doi:10.3390/nu10101534	Intervention/Exposure
49	Meinilä, J, Valkama, A, Koivusalo, SB, Rönö, K, Kautiainen, H, Lindström, J, Stach-Lempinen, B, Eriksson, JG, Erkkola, M. Association between diet quality measured by the Healthy Food Intake Index and later risk of gestational diabetes-a secondary analysis of the RADIEL trial. Eur J Clin Nutr. 2017. 71:913. doi:10.1038/ejcn.2017.66	Publication Status
50	Mendoza, LC, Harreiter, J, Simmons, D, Desoye, G, Adelantado, JM, Juarez, F, Chico, A, Devlieger, R, van Assche, A, Galjaard, S, Damm, P, Mathiesen, ER, Jensen, DM, Andersen, LLT, Tanvig, M, Lapolla, A, Dalfra, MG, Bertolotto, A, Mantaj, U, Wender-Ozegowska, E, Zawiejska, A, Hill, D, Jelsma, JG, Snoek, FJ, van Poppel, MNM, Worda, C, Bancher-Todesca, D, Kautzky-Willer, A, Dunne, FP, Corcoy, R. Risk factors for hyperglycemia in pregnancy in the DALI study differ by period of pregnancy and OGTT time point. Eur J Endocrinol. 2018. 179:39-49. doi:10.1530/eje-18-0003	Intervention/Exposure
51	Mi, B, Wen, X, Li, S, Liu, D, Lei, F, Liu, R, Shen, Y, Chen, Y, Zeng, L, Liu, X, Dang, S, Yan, H. Vegetable dietary pattern associated with low risk of preeclampsia possibly through reducing proteinuria. Pregnancy Hypertens. 2019. 16:131-138. doi:10.1016/j.preghy.2019.04.001	Study Design
52	Mirmiran, P, Hosseinpour-Niazi, S, Moghaddam-Banaem, L, Lamyian, M, Goshtasebi, A, Azizi, F. Inverse relation between fruit and vegetable intake and the risk of gestational diabetes mellitus. Int J Vitam Nutr Res. 2019. 89:37-44. doi:10.1024/0300-9831/a000475	Intervention/Exposure
53	Mizgier, M, Jarzabek-Bielecka, G, Mruczyk, K. Maternal diet and gestational diabetes mellitus development. J Matern Fetal Neonatal Med. 2021. 34:77-86. doi:10.1080/14767058.2019.1598364	Intervention/Exposure
54	Nykjaer, C, Higgs, C, Greenwood, DC, Simpson, NAB, Cade, JE, Alwan, NA. Maternal fatty fish intake prior to and during pregnancy and risks of adverse birth outcomes: Findings from a british cohort. Nutrients. 2019. 11. doi:10.3390/nu11030643	Intervention/Exposure
55	O'Brien, CM, Louise, J, Deussen, A, Dodd, JM. In Overweight or Obese Pregnant Women, Maternal Dietary Factors are not Associated with Fetal Growth and Adiposity. Nutrients. 2018. 10. doi:10.3390/nu10070870	Outcome
56	Osorio-Yáñez, C, Gelaye, B, Qiu, C, Bao, W, Cardenas, A, Enquobahrie, DA, Williams, MA. Maternal intake of fried foods and risk of gestational diabetes mellitus. Ann Epidemiol. 2017. 27:384-390.e1. doi:10.1016/j.annepidem.2017.05.006	Intervention/Exposure
57	Parlapani, E, Agakidis, C, Karagiozoglou-Lampoudi, T, Sarafidis, K, Agakidou, E, Athanasiadis, A, Diamanti, E. The Mediterranean diet adherence by pregnant women delivering prematurely: association with size at birth and complications of prematurity. J Matern Fetal Neonatal Med. 2019. 32:1084-1091. doi:10.1080/14767058.2017.1399120	Study Design
58	Rohatgi, KW, Tinius, RA, Cade, WT, Steele, EM, Cahill, AG, Parra, DC. Relationships between consumption of ultra-processed foods, gestational weight gain and neonatal outcomes in a sample of US pregnant women. PeerJ. 2017. 5:e4091. doi:10.7717/peerj.4091	Outcome

	Citation	Rationale
59	Schoenaker, Dajm, Dodd, JM, Dodd, JM. Does preconception body mass index modify the effect of maternal diet on hypertensive disorders of pregnancy? BJOG: An International Journal of Obstetrics & Gynaecology. 2019. 126:674-674. doi:10.1111/1471-0528.15596	Publication Status
60	Sen, S, Rifas-Shiman, SL, Shivappa, N, Wirth, MD, Hebert, JR, Gold, DR, Gillman, MW, Oken, E. Dietary Inflammatory Potential during Pregnancy Is Associated with Lower Fetal Growth and Breastfeeding Failure: Results from Project Viva. Journal of Clinical Chiropractic Pediatrics. 2017. 16:1381-1381. doi:10.3945/jn.115.225581	Intervention/Exposure
61	Simmons, D, Devlieger, R, van Assche, A, Jans, G, Galjaard, S, Corcoy, R, Adelantado, JM, Dunne, F, Desoye, G, Harreiter, J, Kautzky-Willer, A, Damm, P, Mathiesen, ER, Jensen, DM, Andersen, L, Lapolla, A, Dalfrà, MG, Bertolotto, A, Wender-Ozegowska, E, Zawiejska, A, Hill, D, Snoek, FJ, Jelsma, JG, van Poppel, MN. Effect of Physical Activity and/or Healthy Eating on GDM Risk: The DALI Lifestyle Study. J Clin Endocrinol Metab. 2017. 102:903-913. doi:10.1210/jc.2016-3455	Intervention/Exposure
62	Simões-Wüst, AP, Moltó-Puigmartí, C, Jansen, EH, van Dongen, MC, Dagnelie, PC, Thijs, C. Organic food consumption during pregnancy and its association with health-related characteristics: the KOALA Birth Cohort Study. Public Health Nutr. 2017. 20:2145-2156. doi:10.1017/s1368980017001215	Intervention/Exposure
63	Starling, AP, Sauder, KA, Kaar, JL, Shapiro, AL, Siega-Riz, AM, Dabelea, D. Maternal Dietary Patterns during Pregnancy Are Associated with Newborn Body Composition. J Nutr. 2017. 147:1334- 1339. doi:10.3945/jn.117.248948	Confounders
64	Stuart, JJ, Tanz, LJ, Missmer, SA, Rimm, EB, Spiegelman, D, James-Todd, TM, Rich-Edwards, JW. High Blood Pressure During Pregnancy and Development of Risk Factors for Cardiovascular Disease. Ann Intern Med. 2018. 169. doi:10.7326/p18-0008	Study Design; Publication Status
65	Tajima, R, Yachi, Y, Tanaka, Y, Kawasaki, YA, Nishibata, I, Hirose, AS, Horikawa, C, Kodama, S, lida, K, Sone, H. Carbohydrate intake during early pregnancy is inversely associated with abnormal glucose challenge test results in Japanese pregnant women. Diabetes/Metabolism Research & Reviews. 2017. 33:n/a-N.PAG. doi:10.1002/dmrr.2898	Intervention/Exposure
66	Tajirika-Shirai, R, Takimoto, H, Yokoyama, T, Kaneko, H, Kubota, T, Miyasaka, N. Effect of individualised dietary education at medical check-ups on maternal and fetal outcomes in pregnant Japanese women. Asia Pac J Clin Nutr. 2018. 27:607-616. doi:10.6133/apjcn.082017.01	Study Design; Intervention/Exposure
67	Tielemans, MJ, Erler, NS, Franco, OH, Jaddoe, VWV, Steegers, EAP, Kiefte-de Jong, JC. Dietary acid load and blood pressure development in pregnancy: The Generation R Study. Clin Nutr. 2018. 37:597-603. doi:10.1016/j.clnu.2017.01.013	Intervention/Exposure
68	Valkama, AJ, Meinilä, J, Koivusalo, S, Lindström, J, Rönö, K, Stach-Lempinen, B, Kautiainen, H, Eriksson, JG. The effect of pre-pregnancy lifestyle counselling on food intakes and association between food intakes and gestational diabetes in high-risk women: results from a randomised controlled trial. J Hum Nutr Diet. 2018. 31:301-305. doi:10.1111/jhn.12547	Intervention/Exposure
69	Valkama, AJ, Meinilä, JM, Koivusalo, SB, Lindström, J, Rönö, K, Stach-Lempinen, B, Eriksson, JG. Diet quality as assessed by the Healthy Food Intake Index and relationship with serum lipoprotein particles and serum fatty acids in pregnant women at increased risk for gestational diabetes. Br J Nutr. 2018. 120:914-924. doi:10.1017/s0007114518002404	Confounders
70	Van Der Hoeven, T, Browne, JL, Uiterwaal, CSPM, Van Der Ent, CK, Grobbee, DE, Dalmeijer, GW. Antenatal coffee and tea consumption and the effect on birth outcome and hypertensive pregnancy disorders. PLoS ONE. 2017. 12. doi:10.1371/journal.pone.0177619	Intervention/Exposure
71	Wu, Y, Sun, G, Zhou, X, Zhong, C, Chen, R, Xiong, T, Li, Q, Yi, N, Xiong, G, Hao, L, Yang, N, Yang, X. Pregnancy dietary cholesterol intake, major dietary cholesterol sources, and the risk of gestational diabetes mellitus: A prospective cohort study. Clin Nutr. 2020. 39:1525-1534. doi:10.1016/j.clnu.2019.06.016	Intervention/Exposure
72	Zareei, S, Homayounfar, R, Naghizadeh, MM, Ehrampoush, E, Rahimi, M. Dietary pattern in pregnancy and risk of gestational diabetes mellitus (GDM). Diabetes Metab Syndr. 2018. 12:399-404. doi:10.1016/j.dsx.2018.03.004	Study Design
73	Zhu, Y, Hedderson, MM, Sridhar, S, Xu, F, Feng, J, Ferrara, A. Poor diet quality in pregnancy is associated with increased risk of excess fetal growth: a prospective multi-racial/ethnic cohort study. Int J Epidemiol. 2019. 48:423-432. doi:10.1093/ije/dyy285	Confounders
74	Zulyniak, MA, de Souza, RJ, Shaikh, M, Desai, D, Lefebvre, DL, Gupta, M, Wilson, J, Wahi, G, Subbarao, P, Becker, AB, Mandhane, P, Turvey, SE, Beyene, J, Atkinson, S, Morrison, KM, McDonald, S, Teo, KK, Sears, MR, Anand, SS. Does the impact of a plant-based diet during pregnancy on birth weight differ by ethnicity? A dietary pattern analysis from a prospective Canadian birth cohort alliance. BMJ Open. 2017. 7:e017753. doi:10.1136/bmjopen-2017-017753	Outcome

Table A 13. Search B articles excluded after full text screening

1	Cardiometabolic benefits of balanced, time-restricted diet. Nursing. 2021. 51:19-19. doi:10.1097/01.NURSE.0000800112.56571.eb	Study Design; Publication Status
2	High-Risk Coronary Plaque Regression After Intensive Lifestyle Intervention in Nonbstructive Coronary Disease: A Randomized Study. JACC. Cardiovascular imaging. 2020. doi:10.1016/j.jcmg.2020.10.019	Health Status
3	Vegetarian diets linked to reduced stroke risk. Canadian Nursing Home. 2020. 31:14-14.	Study Design; Publication Status
4	Abbaspour, N, Roberts, T, Hooshmand, S, Kern, M, Hong, MY. Mixed nut consumption may improve cardiovascular disease risk factors in overweight and obese adults. Nutrients. 2019. 11. doi:10.3390/nu11071488	Intervention/Exposure; Study Duration
5	Abdrabalnabi, AA, Rajaram, S, Bitok, E, Oda, K, Beeson, WL, Kaur, A, Cofan, M, Serra-Mir, M, Roth, I, Ros, E, et al. Effects of supplementing the usual diet with a daily dose of walnuts for two years on metabolic syndrome and its components in an elderly cohort. Nutrients. 2020. 12. doi:10.3390/nu12020451	Intervention/Exposure
6	Abe C, Imai T, Sezaki A, Miyamoto K, Kawase F, Shirai Y, Sanada M, Inden A, Kato T, Sugihara N, Shimokata H. Global Association between Traditional Japanese Diet Score and All-Cause, Cardiovascular Disease, and Total Cancer Mortality: A Cross-Sectional and Longitudinal Ecological Study. J Am Nutr Assoc. 2023. 42:660-667. doi:10.1080/27697061.2022.2130472	Study Design
7	Adachi, H, Enomoto, M, Fukami, A, Nakamura, S, Nohara, Y, Kono, S, Sakaue, A, Hamamura, H, Toyomasu, K, Yamamoto, M, Umeki, Y, Fukumoto, Y. Trends in nutritional intake and coronary risk factors over 60 years among Japanese men in Tanushimaru. Heart Vessels. 2020. 35:901-908. doi:10.1007/s00380-020-01561-9	Intervention/Exposure
8	Aekplakorn, W, Tantayotai, V, Numsangkul, S, Tatsato, N, Luckanajantachote, P, Himathongkam, T. Evaluation of a Community-Based Diabetes Prevention Program in Thailand: a Cluster Randomized Controlled Trial. Journal of primary care & community health. 2019. 10:2150132719847374. doi:10.1177/2150132719847374	Intervention/Exposure
9	Agostinis-Sobrinho C, Kievisiene J, Dubey V, Rauckiene-Michealsson A, Norkiene S, Ramirez- Velez R, Reuter CP, Brand C, Mota J, Santos R. Cardiovascular health behavior and blood pressure in adolescents: A longitudinal analysis. Nutr Metab Cardiovasc Dis. 2022. 32:1766-1773. doi:10.1016/j.numecd.2022.04.009	Intervention/Exposure; Outcome; Comparator
10	AHC, Media. Vegetarians and Stroke. Neurology Alert. 2020. 39:1-2.	Publication Status
11	Aiello P, Peluso I, Di Giacomo S, Di Sotto A, Villaño Valencia D. Body Composition and Metabolic Status of Italian and Spanish University Students: Relationship with Fruit and Vegetable Consumption. Nutrients. 2022. 14:3296. doi:10.3390/nu14163296	Study Design
12	Akpulat, S, Gülsoy Kirnap, N, Pfeiffer, A. The effects of low-carbohydrate diet and protein-rich mixed diet on insulin sensitivity, basal metabolic rate and metabolic parameters in obese patients. Turkish Journal of Endocrinology and Metabolism. 2020. 24:206-213. doi:10.25179/tjem.2019-72200	Study Design; Intervention/Exposure
13	Akter, S, Mizoue, T, Nanri, A, Goto, A, Noda, M, Sawada, N, Yamaji, T, Iwasaki, M, Inoue, M, Tsugane, S, Tsugane, S, Sawada, N, Iwasaki, M, Ninue, M, Yamaji, T, Goto, A, Shimazu, TT, Charvat, H, Budhathoki, S, Muto, M, Suzuki, H, Miamizono, T, Kobayashi, Y, Iriei, M, Doi, M, Katagiri, M, Tagami, T, Sou, Y, Uehara, M, Hakubo, Y, Yamagishi, , Noda, M, Mizoue, T, Kawauchi, Y, Nakamura, K, Takachi, R, Ishihara, J, Iso, H, Sovue, T, Sito, I, Yasuda, N, Mimura, M, Sakata, K. Low carbohydrate diet and all cause and cause-specific mortality. Clinical Nutrition. 2021. 40:2016- 2024. doi:10.1016/j.clnu.2020.09.022	Intervention/Exposure
14	Al Aamri, KS, Alrawahi, AH, Al Busaidi, N, Al Githi, MS, Al Jabri, K, Al Balushi, F, Ronquillo-Talara, R, Al Balushi, S, Waly, DM. The effect of low-carbohydrate ketogenic diet in the management of obesity compared with low caloric, low-fat diet. Clinical Nutrition ESPEN. 2022. 49:522-528. doi:10.1016/j.clnesp.2022.02.110	Intervention/Exposure
15	Al Wattar H, B, Dodds, J, Placzek, A, Beresford, L, Spyreli, E, Moore, A, Gonzalez Carreras, FJ, Austin, F, Murugesu, N, Roseboom, TJ, Bes-Rastrollo, M, Hitman, GA, Hooper, R, Khan, KS, Thangaratinam, S. Mediterranean-style diet in pregnant women with metabolic risk factors (ESTEEM): A pragmatic multicentre randomised trial. PLoS Medicine. 2019. 16. doi:10.1371/journal.pmed.1002857	Data Overlap
16	Al-Absi, HRH, Refaee, MA, Nazeemudeen, A, Househ, M, Shah, Z, Alam, T. Cardiovascular Diseases in Qatar: Smoking, Food Habits and Physical Activities Perspectives. Studies in health technology and informatics. 2020. 272:465-469. doi:10.3233/SHTI200596	Study Design; Intervention/Exposure
17	Alamolhoda, SH, Simbar, M, Mirmiran, P, Mirabi, P. Effect of low trans-fatty acid intakes on preeclampsia: A randomized controlled trial. J Res Med Sci. 2020. 25:112. doi:10.4103/jrms.JRMS 149 19	Intervention/Exposure

_		
18	Albert SL, Massar RE, Correa L, Kwok L, Joshi S, Shah S, Boas R, Alcalá HE, McMacken M. Change in cardiometabolic risk factors in a pilot safety-net plant-based lifestyle medicine program. Front Nutr. 2023. 10:1155817. doi:10.3389/fnut.2023.1155817	Study Design; Intervention/Exposure
19	Aliashrafi, S, Arefhosseini, SR, Lotfi-Dizaji, L, Ebrahimi-Mameghani, M. Effect of vitamin D supplementation in combination with weight loss diet on lipid profile and sirtuin 1 in obese subjects with vitamin D deficiency: a double blind randomized clinical trial. Health Promot Perspect. 2019. 9:263-269. doi:10.15171/hpp.2019.36	Intervention/Exposure
20	Aljefree, NM, Almoraie, NM, Shatwan, IM. Association of two types of dietary pattern scores with cardiovascular disease risk factors and serum 25 hydroxy vitamin D levels in Saudi Arabia. Food Nutr Res. 2021. 65. doi:10.29219/fnr.v65.5481	Study Design
21	Al-Lahou B, Ausman LM, Peñalvo JL, Huggins GS, Zhang FF. Cardiometabolic deaths attributable to poor diet among Kuwaiti adults. 17.	Study Design
22	Alonso Y, Miralles C, Algora MJ, Valiente-Pallejà A, Sánchez-Gistau V, Muntané G, Labad J, Vilella E, Martorell L. Risk factors for metabolic syndrome in individuals with recent-onset psychosis at disease onset and after 1-year follow-up. 12.	Study Design; Intervention/Exposure
23	Alvarez-Alvarez, I, Toledo, E, Lecea, O, Salas-Salvado, J, Corella, D, Buil-Cosiales, P, Zomeno, MD, Vioque, J, Martinez, JA, Konieczna, J, Baron-Lopez, FJ, Lopez-Miranda, J, Estruch, R, Bueno- Cavanillas, A, Alonso-Gomez, AM, Tur, JA, Tinahones, FJ, Serra-Majem, L, Martin, V, Ortega- Calvo, M, Vazquez, C, Pinto, X, Vidal, J, Daimiel, L, Delgado-Rodriguez, M, Matia, P, Gonzalez, JI, Diaz-Lopez, A, Paz-Graniel, I, Munoz, MA, Fito, M, Pertusa-Martinez, S, Abete, I, Garcia-Rios, A, Ros, E, Ruiz-Canela, M, Martinez-Gonzalez, MA. Adherence to a priori dietary indexes and baseline prevalence of cardiovascular risk factors in the PREDIMED-Plus randomised trial. Eur J Nutr. 2020. 59:1219-1232. doi:10.1007/s00394-019-01982-x	Study Design
24	Alves MA, Miranda AM, Cacau LT, Levy J, Generoso G, Bittencourt MS, Lotufo PA, Bensenor IM, Marchioni DM. Dietary patterns and subclinical atherosclerosis incidence and progression: Results from ELSA-Brasil.	Outcome
25	Ambrosy AP, Malik UI, Leong TK, Allen AR, Sung SH, Go AS. Food security, diet quality, nutritional knowledge, and attitudes towards research in adults with heart failure during the COVID-19 pandemic.	Study Design; Health Status
26	Amil, S, Lemieux, I, Poirier, P, Lamarche, B, Despres, JP, Almeras, N. Targeting Diet Quality at the Workplace: Influence on Cardiometabolic Risk. Nutrients. 2021. 13. doi:10.3390/nu13072283	Study Design
27	Andersen, E, van der Ploeg, HP, van Mechelen, W, Gray, CM, Mutrie, N, van Nassau, F, Jelsma, JGM, Anderson, AS, Silva, MN, Pereira, HV, McConnachie, A, Sattar, N, Sørensen, M, Røynesdal, ØB, Hunt, K, Roberts, GC, Wyke, S, Gill, JMR. Contributions of changes in physical activity, sedentary time, diet and body weight to changes in cardiometabolic risk. International Journal of Behavioral Nutrition and Physical Activity. 2021. 18.	Intervention/Exposure; Outcome
28	Andueza, N, Cuervo, M, Martin-Calvo, N, Navas-Carretero, S. A nutritional intervention among children aged 6-12 years-old is effective on improving dietary pattern and anthropometry: randomized parallel controlled study. Annals of nutrition & metabolism. 2022. 78:38 doi:10.1159/000526374	Publication Status
29	Anelli, GM, Parisi, F, Sarno, L, Fornaciari, O, Carlea, A, Coco, C, Porta, MD, Mollo, N, Villa, PM, Guida, M, Cazzola, R, Troiano, E, Pasotti, M, Volpi, G, Vetrani, L, Maione, M, Cetin, I. Associations between Maternal Dietary Patterns, Biomarkers and Delivery Outcomes in Healthy Singleton Pregnancies: Multicenter Italian GIFt Study. Nutrients. 2022. 14.	Outcome
30	Angoorani, P, Mostafaei, S, Kiani, T, Ejtahed, H-S, Motlagh, ME, Shafiee, G, Gorabi, AM, Qorbani, M, Heshmat, R, Kelishadi, R. Determinants of childhood blood pressure using structure equation model: The CASPIAN-V study. BMC Cardiovascular Disorders. 2020. 20.	Study Design
31	Antoniazzi, L, Arroyo-Olivares, R, Bittencourt, MS, Tada, MT, Lima, I, Jannes, CE, Krieger, JE, Pereira, AC, Quintana-Navarro, G, Muniz-Grijalvo, O, Diaz-Diaz, JL, Zambon, D, Mata, P, Santos, RD. Association of dietary components with dyslipidemia and low-grade inflammation biomarkers in adults with heterozygous familial hypercholesterolemia from different countries. Eur J Clin Nutr. 2019. 73:1622-1625. doi:10.1038/s41430-019-0529-3	Study Design; Publication Status
32	Appannah, G, Emi, NA, Gan, WY, Mohd Shariff, Z, Shamsuddin, NH, Anuar Zaini, A, Appukutty, M. The Relationships between a Dietary Pattern Linked to Cardiometabolic Risk Factors and Life Satisfaction in Early Adolescence. Int J Environ Res Public Health. 2020. 17. doi:10.3390/ijerph17155489	Study Design; Outcome
33	Arenaza, L, Medrano, M, Oses, M, Amasene, M, Diez, I, Rodriguez-Vigil, B, Labayen, I. The Effect of a Family-Based Lifestyle Education Program on Dietary Habits, Hepatic Fat and Adiposity Markers in 8-12-Year-Old Children with Overweight/Obesity. Nutrients. 2020. 12. doi:10.3390/nu12051443	Intervention/Exposure; Comparator
34	Arvizu, M, Afeiche, MC, Hansen, S, Halldorsson, TF, Olsen, SF, Chavarro, JE. Fat intake during pregnancy and risk of preeclampsia: a prospective cohort study in Denmark. European Journal of Clinical Nutrition. 2019. 73:1040-1048. doi:10.1038/s41430-018-0290-z	Intervention/Exposure

35	Arvizu, M, Stuart, JJ, Rich-Edwards, JW, Gaskins, AJ, Rosner, B, Chavarro, JE. Prepregnancy	Life Stage
	adherence to dietary recommendations for the prevention of cardiovascular disease in relation to	
	risk of hypertensive disorders of pregnancy. Am J Clin Nutr. 2020. 112:1429-1437. doi:10.1093/ajcn/nqaa214	
36	Asemi, Z, Tabassi, Z, Samimi, M, Fahiminejad, T, Esmaillzadeh, A. Favourable effects of the Dietary	Health Status
30	Approaches to Stop Hypertension diet on glucose tolerance and lipid profiles in gestational diabetes:	Health Status
	A randomised clinical trial. British Journal of Nutrition. 2013. 109:2024.	
37	Asemi, Z, Tabassi, Z, Samimi, M, Fahiminejad, T, Esmaillzadeh, A. Favorable effects of the Dietary	Study Design;
•	Approaches to Stop Hypertension diet on glucose tolerance and lipid profiles in gestational diabetes:	Publication Status
	a randomised clinical trial - Expression of concern. Br J Nutr. 2021. 1.	
	doi:10.1017/S0007114521002002	
38	Asghari G, Mirmiran P, Rezaeemanesh A, Mahdavi M, Azizi F, Hadaegh F. Changes in ideal	Study Design
	cardiovascular health among Iranian adolescents: 2007-2008 to 2015-2017. 22.	, 3
39	Assaf-Balut, C, de la Torre, NG, Durán, A, Bordiu, E, del Valle, L, Familiar, C, Valerio, J, Jimenez, I,	Data Overlap
	Herraiz, MA, Izquierdo, N, Runkle, I, de Miguel, MP, Montañez, C, Barabash, A, Cuesta, M, Rubio,	
	MA, Calle-Pascual, AL. An early, universal mediterranean diet-based intervention in pregnancy	
	reduces cardiovascular risk factors in the "fourth trimester". Journal of Clinical Medicine. 2019. 8.	
	doi:10.3390/jcm8091499	
40	Assaf-Balut, C, de la Torre, NG, Fuentes, M, Durán, A, Bordiú, E, Del Valle, L, Valerio, J, Jiménez, I,	Data Overlap
	Herraiz, MA, Izquierdo, N, Torrejón, MJ, de Miguel, MP, Barabash, A, Cuesta, M, Rubio, MA, Calle-	
	Pascual, AL. A high adherence to six food targets of the mediterranean diet in the late first trimester	
	is associated with a reduction in the risk of materno-foetal outcomes: The st. carlos gestational	
41	diabetes mellitus prevention study. Nutrients. 2019. 11. doi:10.3390/nu11010066 Assaf-Balut, C, García De La Torre, N, Duran, A, Fuentes, M, Bordiú, E, Del Valle, L, Familiar, C,	Data Overlap
41	Valerio, J, Jiménez, I, Herraiz, MA, Izquierdo, N, Torrejon, MJ, Cuadrado, Á M, Ortega, I, Illana, FJ,	Data Overlap
	Runkle, I, De Miguel, P, Moraga, I, Montañez, C, Barabash, A, Cuesta, M, Rubio, MA, Calle-	
	Pascual, AL. A mediterranean diet with an enhanced consumption of extra virgin olive oil and	
	pistachios improves pregnancy outcomes in women without gestational diabetes mellitus: A sub-	
	analysis of the St. Carlos gestational diabetes mellitus prevention study. Annals of Nutrition and	
	Metabolism. 2019. 74:69-79. doi:10.1159/000495793	
42	Avnon, T, Paz Dubinsky, E, Lavie, I, Ben-Mayor Bashi, T, Anbar, R, Yogev, Y. The impact of a	Confounders
	vegan diet on pregnancy outcomes. Journal of Perinatology. 2021. 41:1129-1133.	
	doi:10.1038/s41372-020-00804-x	
43	Azzini, E, Peluso, I, Intorre, F, Barnaba, L, Venneria, E, Foddai, MS, Ciarapica, D, Maiani, F,	Study Design;
	Raguzzini, A, Polito, A. Total and Plant Protein Consumption: The Role of Inflammation and Risk of	Intervention/Exposure
	Non-Communicable Disease. International Journal of Molecular Sciences. 2022. 23.	
44	Bae, Y-J, Yu, K-W, Lee, K-H, Jang, K-I. Association of the healthy eating index with metabolic abnormalities among middle-aged adults living in single-person households in korea. Nutrients.	Study Design
	2021. 13.	
45	Bahrami, A, Zarban, A, Dehghani, H, Mohamadifard, M, Tavallaie, S, Ferns, GA. The Relationship	Study Design;
	Between Adherence to a Dietary Approach to Stop Hypertension Diet with Oxidative Stress and	Outcome
	Antioxidant Capacity in Young Women. Turkish Journal of Endocrinology and Metabolism. 2022.	Cateonio
	26:141.	
46	Bakhtiari, A, Hajian-Tilaki, K, Omidvar, S, Nasiri-Amiri, F. Clinical and metabolic response to soy	Intervention/Exposure
	administration in older women with metabolic syndrome: A randomized controlled trial. Diabetology	
	and Metabolic Syndrome. 2019. 11. doi:10.1186/s13098-019-0441-y	
47	Bakre S, Shea B, Langheier J, Hu EA. Blood Pressure Control in Individuals With Hypertension Who	Intervention/Exposure
	Used a Digital, Personalized Nutrition Platform: Longitudinal Study. 6.	
48	Gray, M, Baldwin, N, Bae, S, Ramachandran, R, VanWagner, LB, Jacobs, D, Terry, J, Shikany, J.	Outcome; Publication
	Dietary patterns and risk of non-alcoholic fatty liver disease (NAFLD): A 25-year follow-up from the	Status
	coronary artery risk development in young adults (CARDIA) study. Gastroenterology. 2021. 160:S-832.	
49	Balkan, Lauren, Bryan, Joanna, Kim, Samuel, Sterling, Madeline, Brown, Todd, Judd, Suzanne,	Publication Status
43	Hummel, Scott, Arora, Pankaj, Jackson, Elizabeth, Safford, Monika, Levitan, Emily, Goyal, Parag.	Tublication Status
	The DASH diet pattern protects against incident heart failure. Journal of the American College of	
	Cardiology (JACC). 2020. 75:721-721. doi:10.1016/S0735-1097(20)31348-6	
50	Bansal S, Connolly M, Harder T. Impact of a Whole-Foods, Plant-Based Nutrition Intervention on	Study Design
	Patients Living with Chronic Disease in an Underserved Community. 16.	, = = =
51	Barker, K, Davy, B. Is Consumption of Ultra-Processed Foods Associated with Cardiometabolic	Publication Status
	Risk?. Scan's Pulse. 2021. 41:1-5.	
52	Barnard ND, Rembert E, Freeman A, Bradshaw M, Holubkov R, Kahleova H. Blood Type Is Not	Intervention/Exposure
	Associated with Changes in Cardiometabolic Outcomes in Response to a Plant-Based Dietary	·
	Intervention. 121.	

53	Barnard, ND, Alwarith, J, Rembert, E, Brandon, L, Nguyen, M, Goergen, A, Horne, T, do Nascimento, GF, Lakkadi, K, Tura, A, Holubkov, R, Kahleova, H. A Mediterranean Diet and Low-Fat Vegan Diet to Improve Body Weight and Cardiometabolic Risk Factors: A Randomized, Cross-over	Intervention/Exposure
	Trial. J Am Coll Nutr. 2021. 1-13. doi:10.1080/07315724.2020.1869625	· · · · · · · · · · · · · · · · · · ·
54	Barnett JB, Zeng W. Healthy Eating for Successful Living in Older Adults ™ community education program-evaluation of lifestyle behaviors: A randomized controlled trial. 3.	Intervention/Exposure; Study Duration; Outcome
55	Barroso M, Zomeño MD, Díaz JL, Pérez S, Martí-Lluch R, Cordón F, Ramos R, Cabezas C, Salvador G, Castell C, Schröder H, Grau M. Efficacy of tailored recommendations to promote healthy lifestyles: a post hoc analysis of a randomized controlled trial. 11.	Intervention/Exposure
56	Bartels ECM, den Braver NR, Borgonjen-van den Berg KJ, Rutters F, van der Heijden A, Beulens JWJ. Adherence to the Dutch healthy diet index and change in glycemic control and cardiometabolic markers in people with type 2 diabetes.	Health Status
57	Basu A, Chien LC, Alman AC, Snell-Bergeon JK. Associations of dietary patterns and nutrients with coronary artery calcification and pericardial adiposity in a longitudinal study of adults with and without type 1 diabetes. 60.	Outcome
58	Bayerle P, Beyer S, Tegtbur U, Kück M, Adel J, Kwast S, Pökel C, Kerling A, Busse M. Exercise Capacity, Iron Status, Body Composition, and Mediterranean Diet in Patients with Chronic Heart Failure. 15.	Study Design; Health Status
59	Beasley, JM, Yi, SS, Ahn, J, Kwon, SC, Wylie-Rosett, J. Dietary Patterns in Chinese Americans are Associated with Cardiovascular Disease Risk Factors, the Chinese American Cardiovascular Health Assessment (CHA CHA). Journal of immigrant and minority health. 2019. 21:1061-1069. doi:10.1007/s10903-018-0800-z	Study Design
60	Beigrezaei S, Jambarsang S, Khayyatzadeh SS, Mirzaei M, Mehrparvar AH, Salehi-Abargouei A. A comparison of principal component analysis, partial least-squares, and reduced-rank regressions in the identification of dietary patterns associated with hypertension: YaHS-TAMYZ and Shahedieh cohort studies. 9.	Study Design; Country
61	Belardo D, Michos ED, Blankstein R, Blumenthal RS, Ferdinand KC, Hall K, Klatt K, Natajaran P, Ostfeld RJ, Reddy K, Rodriguez R, Sriram U, Tobias DK, Gulati M. Practical, Evidence-Based Approaches to Nutritional Modifications to Reduce Atherosclerotic Cardiovascular Disease: An American Society For Preventive Cardiology Clinical Practice Statement. 10.	Study Design
62	Bellikci-Koyu E, Sarer-Yurekli BP, Karagozlu C, Aydin-Kose F, Ozgen AG, Buyuktuncer Z. Probiotic kefir consumption improves serum apolipoprotein A1 levels in metabolic syndrome patients: a randomized controlled clinical trial. 102.	Intervention/Exposure
63	Benharrat, LI, Senouci, A, Benhabib, W, Mekki, K. Prevalence of metabolic syndrome in women with polycystic ovary syndrome: Relationship with lifestyle and cardiometabolic biomarkers. Romanian Journal of Diabetes, Nutrition and Metabolic Diseases. 2021. 28:383.	Study Design; Intervention/Exposure
64	Ben-Yacov, O, Godneva, A, Rein, M, Shilo, S, Lotan-Pompan, M, Weinberger, A, Segal, E. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in pre-diabetes. Gut. 2023.	Intervention/Exposure
65	Bernabe-Ortiz, A, Pauschardt, J, Diez-Canseco, F, Miranda, JJ. Sustainability of mhealth effects on cardiometabolic risk factors: Five-year results of a randomized clinical trial. Journal of Medical Internet Research. 2020. 22. doi:10.2196/14595	Intervention/Exposure
66	Beydoun, HA, Huang, S, Beydoun, MA, Hossain, S, Zonderman, AB. Mediating-moderating effect of allostatic load on the association between dietary approaches to stop hypertension diet and all-cause and cause-specific mortality: 2001-2010 national health and nutrition examination surveys. Nutrients. 2019. 11. doi:10.3390/nu11102311	Intervention/Exposure
67	Bhave VM, Ament Z, Patki A, Gao Y, Kijpaisalratana N, Guo B, Chaudhary NS, Garcia Guarniz AL, Gerszten R, Correa A, Cushman M, Judd S, Irvin MR, Kimberly WT. Plasma metabolites link dietary patterns to stroke risk.	Intervention/Exposure; Outcome
68	Bigornia SJ, Noel SE, Porter C, Zhang X, Talegawker SA, Carithers TC, Correa A, Tucker KL. Red meat consumption, incident cardiovascular disease, and the influence of dietary quality in the Jackson Heart Study.	Intervention/Exposure
69	Blancas-Sánchez IM, Del Rosal Jurado M, Aparicio-Martínez P, Quintana Navarro G, Vaquero- Abellan M, Castro Jiménez RA, Fonseca Pozo FJ. A Mediterranean-Diet-Based Nutritional Intervention for Children with Prediabetes in a Rural Town: A Pilot Randomized Controlled Trial. 14.	Outcome
70	Blumenthal, JA, Hinderliter, AL, Smith, PJ, Mabe, S, Watkins, LL, Craighead, L, Ingle, K, Tyson, C, Lin, P-H, Kraus, WE, Liao, L, Sherwood, A. Effects of Lifestyle Modification on Patients with Resistant Hypertension: Results of the TRIUMPH Randomized Clinical Trial. Circulation. 2021. 1212.	Intervention/Exposure; Health Status
71	Bodnar LM, Cartus AR, Kennedy EH, Kirkpatrick SI, Parisi SM, Himes KP, Parker CB, Grobman WA, Simhan HN, Silver RM, Wing DA, Perry S, Naimi AI. A Doubly Robust Machine Learning-Based Approach to Evaluate Body Mass Index as a Modifier of the Association Between Fruit and Vegetable Intake and Preeclampsia.	Intervention/Exposure

72	Bogataj Jontez N, Kenig S, Sik Novak K, Petelin A, Jenko Pražnikar Z, Mohorko N. Habitual low	Study Design;
73	carbohydrate high fat diet compared with omnivorous, vegan, and vegetarian diets. 10. Bonaccio M, Costanzo S, Di Castelnuovo A, Gialluisi A, Ruggiero E, De Curtis A, Persichillo M,	Intervention/Exposure Outcome
15	Cerletti C, Donati MB, de Gaetano G, lacoviello L. Increased adherence to the Mediterranean diet is associated with reduced low-grade inflammation after a 12.7-year period: results from the Moli-sani Study.	Outcome
74	Bonaccio, M, Di Castelnuovo, A, Costanzo, S, De Curtis, A, Persichillo, M, Cerletti, C, Donati, MB, de Gaetano, G, Iacoviello, L. Impact of combined healthy lifestyle factors on survival in an adult general population and in high-risk groups: prospective results from the Moli-sani Study. Journal of Internal Medicine. 2019. 286:207-220. doi:10.1111/joim.12907	Intervention/Exposure; Health Status
75	Bowers, Jennifer. Nutrition Interventions to Manage Hyperlipidemia. Today's Dietitian. 2020. 22:50- 55.	Publication Status
76	Bozbulut, R, Ertas-Ozturk, Y, Doger, E, Bideci, A, Koksal, E. Increased Obesity Awareness and Adherence to Healthy Lifestyle-Diet Reduce Metabolic Syndrome Risk in Overweight Children. J Am Coll Nutr. 2020. 39:432-437. doi:10.1080/07315724.2019.1691951	Study Design
77	Brand, C, Martins, CML, Lemes, VB, Pessoa, MLF, Dias, AF, Cadore, EL, Mota, J, Gaya, ACA, Gaya, AR. Effects and prevalence of responders after a multicomponent intervention on cardiometabolic risk factors in children and adolescents with overweight/obesity: Action for health study. J Sports Sci. 2020. 38:682-691. doi:10.1080/02640414.2020.1725384	Intervention/Exposure
78	Bruno, E, Oliverio, A, Paradiso, AV, Daniele, A, Tommasi, S, Tufaro, A, Terribile, DA, Magno, S, Filippone, A, Venturelli, E, Morelli, D, Baldassari, I, Cravana, ML, Manoukian, S, Pasanisi, P. A Mediterranean Dietary Intervention in Female Carriers of BRCA Mutations: Results from an Italian Prospective Randomized Controlled Trial. Cancers (Basel). 2020. 12. doi:10.3390/cancers12123732	Intervention/Exposure
79	Bruno, E, Roveda, E, Gargano, G, Baldassari, I, Oliverio, A, Galasso, L, Montaruli, A, Cortellini, M, Di Mauro, MG, Venturelli, E, Berrino, F, Pasanisi, P. Aderenza alle raccomandazioni WCRF/AICR 2018 e sonno in persone con sindrome metabolica. Epidemiologia e prevenzione. 2020. 44:288-294. doi:10.19191/EP20.4.P288.059	Study Design
80	Buchman, M, Jin, Q, Sotos-Prieto, M. The effectiveness of the Healthy Heart Score Intervention as a Primordial Prevention Tool in a Primary Care Setting: a Randomized Controlled Trial, Pilot Study. Revista espanola de nutricion humana y dietetica. 2019. 23:204-205.	Publication Status
81	Buckland, G, Northstone, K, Emmett, PM, Taylor, CM. The inflammatory potential of the diet in childhood is associated with cardiometabolic risk in adolescence/young adulthood in the ALSPAC birth cohort. European Journal of Nutrition. 2022. 61:3471.	Intervention/Exposure
82	Budhathoki, S, Sawada, N, Iwasaki, M, Yamaji, T, Goto, A, Kotemori, A, Ishihara, J, Takachi, R, Charvat, H, Mizoue, T, Iso, H, Tsugane, S, Japan Public Health Center-based Prospective Study, Group. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality in a Japanese Cohort. JAMA Intern Med. 2019. 179:1509-1518. doi:10.1001/jamainternmed.2019.2806	Intervention/Exposure
83	Cacau, LT, Benseñor, IM, Goulart, AC, Cardoso, LO, Lotufo, PA, Moreno, LA, Marchioni, DM. Adherence to the planetary health diet index and obesity indicators in the Brazilian longitudinal study of adult health (ELSA-Brasil). Nutrients. 2021. 13.	Study Design
84	Caferoglu, Z, Erdal, B, Hatipoglu, N, Kurtoglu, S. The effects of diet quality and dietary acid load on insulin resistance in overweight children and adolescents. Los efectos de la calidad de la dieta y la carga ácida de la dieta sobre la resistencia a la insulina en niños y adolescentes con sobrepeso. 2022. 69:426.	Study Design
85	Cai, Q, Duan, M-J, Dekker, LH, Carrero, JJ, Avesani, CM, Bakker, SJL, De Borst, MH, Navis, GJ. Ultraprocessed food consumption and kidney function decline in a population-based cohort in the Netherlands. American Journal of Clinical Nutrition. 2022. 116:263.	Outcome
86	Cai, R, Chao, J, Li, D, Zhang, M, Kong, L, Wang, Y. Effect of community-based lifestyle interventions on weight loss and cardiometabolic risk factors in obese elderly in China: a randomized controlled trial. Experimental gerontology. 2019. 128:110749. doi:10.1016/j.exger.2019.110749	Intervention/Exposure; Comparator
87	Campanella, A, Iacovazzi, PA, Misciagna, G, Bonfiglio, C, Mirizzi, A, Franco, I, Bianco, A, Sorino, P, Caruso, MG, Cisternino, AM, Buongiorno, C, Liuzzi, R, Osella, AR. The Effect of Three Mediterranean Diets on Remnant Cholesterol and Non-Alcoholic Fatty Liver Disease: A Secondary Analysis. Nutrients. 2020. 12. doi:10.3390/nu12061674	Intervention/Exposure
88	Cao, Y, Liu, Y, Zhao, X, Duan, D, Dou, W, Fu, W, Chen, H, Bo, Y, Qiu, Y, Chen, G, Lyu, Q. Adherence to a Dietary Approaches to Stop Hypertension (DASH)-style Diet in Relation to Preeclampsia: A Case-Control Study. Sci Rep. 2020. 10:9078. doi:10.1038/s41598-020-65912-2	Study Design
89	Cao, Z, Xu, C, Yang, H, Li, S, Wang, Y. The Role of Healthy Lifestyle in Cancer Incidence and Temporal Transitions to Cardiometabolic Disease. JACC: CardioOncology. 2021. 3:663.	Health Status; Outcome; Comparator
90	Carballo-Casla, A, Ortola, R, Garcia-Esquinas, E, Oliveira, A, Sotos-Prieto, M, Lopes, C, Lopez-Garcia, E, Rodriguez-Artalejo, F. The Southern European Atlantic Diet and all-cause mortality in older adults. BMC Med. 2021. 19:36. doi:10.1186/s12916-021-01911-y	Outcome

91	Carubbi F, Alunno A, Mai F, Mercuri A, Centorame D, Cipolloni J, Mariani FM, Rossi M, Bartoloni E, Grassi D, Ferri C. Adherence to the Mediterranean diet and the impact on clinical features in primary Sjögren's syndrome. 39 Suppl 133.	Study Design; Health Status
92	Casas R, Ribó-Coll M, Ros E, Fitó M, Lamuela-Raventos RM, Salas-Salvadó J, Zazpe I, Martínez- González MA, Sorlí JV, Estruch R, Sacanella E. Change to a healthy diet in people over 70 years old: the PREDIMED experience.	Comparator
93	Castela Forte J, Gannamani R, Folkertsma P, Kumaraswamy S, Mount S, van Dam S, Hoogsteen J. Changes in Blood Lipid Levels After a Digitally Enabled Cardiometabolic Preventive Health Program: Pre-Post Study in an Adult Dutch General Population Cohort. 6.	Study Design; Intervention/Exposure
94	Castro-Acosta, ML, Sanders, TAB, Reidlinger, DP, Darzi, J, Hall, WL. Adherence to UK dietary guidelines is associated with higher dietary intake of total and specific polyphenols compared with a traditional UK diet: further analysis of data from the Cardiovascular risk REduction Study: supported by an Integrated Dietary Approach (CRESSIDA) randomised controlled trial. British journal of nutrition. 2019. 121:402-415. doi:10.1017/S0007114518003409	Outcome
95	Cesar, T, Benassi, R, Ponce, O, Nasser, M. Orange juice combined to a healthy-eating pattern improved endothelial function and reduced global risk of CHD in metabolic syndrome patients. Proceedings of the Nutrition Society. 2020. 79. doi:10.1017/S0029665120001895	Publication Status; Comparator
96	Cesari, F, Dinu, M, Pagliai, G, Rogolino, A, Giusti, B, Gori, AM, Casini, A, Marcucci, R, Sofi, F. Mediterranean, but not lacto-ovo-vegetarian, diet positively influence circulating progenitor cells for cardiovascular prevention: the CARDIVEG study. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2019. 29:604-610. doi:10.1016/j.numecd.2019.02.005	Intervention/Exposure Outcome
97	Chairistanidou C, Karatzi K, Karaglani E, Usheva N, Liatis S, Chakarova N, Mateo-Gallego R, Lamiquiz-Moneo I, Radó S, Antal E, Bíró É, Kivelä J, Wikström K, lotova V, Cardon G, Makrilakis K, Manios Y. Diet quality in association to lipidaemic profile in adults of families at high-risk for type 2 diabetes in Europe: The Feel4Diabetes study.	Study Design
98	Chan Q, Wren GM, Lau CE, Ebbels TMD, Gibson R, Loo RL, Aljuraiban GS, Posma JM, Dyer AR, Steffen LM, Rodriguez BL, Appel LJ, Daviglus ML, Elliott P, Stamler J, Holmes E, Van Horn L. Blood pressure interactions with the DASH dietary pattern, sodium, and potassium: The International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP).	Study Design
99	Chan, R, Leung, J, Woo, J. High Protein Intake Is Associated with Lower Risk of All-Cause Mortality in Community-Dwelling Chinese Older Men and Women. Journal of Nutrition, Health and Aging. 2019. 23:987-996. doi:10.1007/s12603-019-1263-1	Intervention/Exposure Country
100	Chang, AR, Gummo, L, Yule, C, Bonaparte, H, Collins, C, Naylor, A, Appel, LJ, Juraschek, SP, Bailey-Davis, L. Effects of a Dietitian-Led, Telehealth Lifestyle Intervention on Blood Pressure: Results of a Randomized, Controlled Trial. Journal of the American Heart Association. 2022. e027213.	Intervention/Exposure Comparator
101	Chang, CM, Chiu, THT, Chang, CC, Lin, MN, Lin, CL. Plant-based diet, cholesterol, and risk of gallstone disease: A prospective study. Nutrients. 2019. 11. doi:10.3390/nu11020335	Country
102	Chang, SL, Lee, KJ, Nfor, ON, Chen, PH, Lu, WY, Ho, CC, Lung, CC, Chou, MC, Liaw, YP. Vegetarian Diets along with Regular Exercise: Impact on High-Density Lipoprotein Cholesterol Levels among Taiwanese Adults. Medicina (Kaunas). 2020. 56. doi:10.3390/medicina56020074	Intervention/Exposure Country
103	Chang, SL, Nfor, ON, Ho, CC, Lee, KJ, Lu, WY, Lung, CC, Tantoh, DM, Hsu, SY, Chou, MC, Liaw, YP. Combination of Exercise and Vegetarian Diet: Relationship with High Density-Lipoprotein Cholesterol in Taiwanese Adults Based on MTHFR rs1801133 Polymorphism. Nutrients. 2020. 12. doi:10.3390/nu12061564	Study Design; Intervention/Exposure
104	Chen M, Xu Y, Wang X, Shan S, Cheng G. Association between the prudent dietary pattern and blood pressure in Chinese adults is partially mediated by body composition. 10.	Study Design
105	Chen S, Zong G, Wu Q, Yun H, Niu Z, Zheng H, Zeng R, Sun L, Lin X. Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older Chinese. 65.	Intervention/Exposure
106	Chen, LW, Aubert, AM, Shivappa, N, Bernard, JY, Mensink-Bout, SM, Geraghty, AA, Mehegan, J, Suderman, M, Polanska, K, Hanke, W, Trafalska, E, Relton, CL, Crozier, SR, Harvey, NC, Cooper, C, Duijts, L, Heude, B, Hebert, JR, McAuliffe, FM, Kelleher, CC, Phillips, CM. Associations of maternal dietary inflammatory potential and quality with offspring birth outcomes: An individual participant data pooled analysis of 7 European cohorts in the ALPHABET consortium. PLoS Med. 2021. 18:e1003491. doi:10.1371/journal.pmed.1003491	Outcome
107	Chen, Xuanli, Chu, Jiadong, Hu, Wei, Sun, Na, He, Qida, Liu, Siyuan, Feng, Zhaolong, Li, Tongxing, Han, Qiang, Shen, Yueping. Associations of ultra-processed food consumption with cardiovascular disease and all-cause mortality: UK Biobank. European Journal of Public Health. 2022. 32:779-785. doi:10.1093/eurpub/ckac104	Intervention/Exposure
108	Chevli, PA, Mehta, A, Allison, M, Ding, J, Nasir, K, Blaha, MJ, Blankstein, R, Talegawkar, SA, Kanaya, AM, Shapiro, MD, Mongraw-Chaffin, M. Relationship of American Heart Association's Life Simple 7, Ectopic Fat, and Insulin Resistance in 5 Racial/Ethnic Groups. Journal of Clinical Endocrinology and Metabolism. 2022. 107:E2394.	Study Design; Intervention/Exposure

109	Chiu, THT, Chang, HR, Wang, LY, Chang, CC, Lin, MN, Lin, CL. Vegetarian diet and incidence of	Intervention/Exposure;
	total, ischemic, and hemorrhagic stroke in 2 cohorts in Taiwan. Neurology. 2020. 94:e1112-e1121. doi:10.1212/WNL.0000000000009093	Country
110	Chiusolo, S, Aimo, A, Schmidt, EB, De Caterina, R. The ratio between n-3 and n-6 polyunsaturated fatty acids in the adipose tissue is more predictive of myocardial infarction than absolute levels of n-	Intervention/Exposure
	3 fatty acids: results from the danish diet, cancer and health cohort study. Giornale italiano di cardiologia. 2020. 21:e96	
111	Chiva-Blanch, G, Crespo, J, Estruch, R, Badimon, L. One year of mediterranean diet decreases	Outcome; Publication
	microvesicle release from activated platelets and leukocytes in asymptomatic high cardiovascular risk patients. European heart journal. 2019. 40:8 doi:10.1093/eurheartj/ehz747.0006	Status
112	Chmurzynska, A, Muzsik, A, Krzyżanowska-Jankowska, P, M. PPARG and FTO polymorphism can modulate the outcomes of a central European diet and a Mediterranean diet in centrally obese postmenopausal women. Nutrition Research. 2019. 69:94-100. doi:10.1016/j.nutres.2019.08.005	Intervention/Exposure
113	Choi MK, Park YM, Shivappa N, Hong OK, Han K, Steck SE, Hebert JR, Merchant AT, Sandler DP, Lee SS. Inflammatory potential of diet and risk of mortality in normal-weight adults with central obesity. 42.	Intervention/Exposure
114	Choi, Y, Steffen, LM, Chu, H, Duprez, DA, Gallaher, DD, Shikany, JM, Schreiner, PJ, Shroff, GR, Jacobs, DR. A Plant-Centered Diet and Markers of Early Chronic Kidney Disease during Young to Middle Adulthood: Findings from the Coronary Artery Risk Development in Young Adults (CARDIA) Cohort. Journal of Nutrition. 2021. 151:2721.	Outcome
115	Choi, YJ, Ailshire, JA, Kim, JK, Crimmins, EM. Diet Quality and Biological Risk in a National Sample of Older Americans. Journal of aging and health. 2021. 8982643211046818.	Outcome
116	Chuang SY, Chang HY, Fang HL, Lee SC, Hsu YY, Yeh WT, Liu WL, Pan WH. The Healthy Taiwanese Eating Approach is inversely associated with all-cause and cause-specific mortality: A prospective study on the Nutrition and Health Survey in Taiwan, 1993-1996. 16.	Country
117	Chudasama, YV, Khunti, K, Gillies, CL, Dhalwani, NN, Davies, MJ, Yates, T, Zaccardi, F. Healthy lifestyle and life expectancy in people with multimorbidity in the UK Biobank: A longitudinal cohort study. PLoS Med. 2020. 17:e1003332. doi:10.1371/journal.pmed.1003332	Intervention/Exposure; Health Status; Outcome
118	Cipryan L, Litschmannova M, Maffetone PB, Plews DJ, Dostal T, Hofmann P, Laursen PB. Very Low-Carbohydrate High-Fat Diet Improves Risk Markers for Cardiometabolic Health More Than Exercise in Men and Women With Overfat Constitution: Secondary Analysis of a Randomized Controlled Clinical Trial. 9.	Intervention/Exposure
119	Cipryan, L, Dostal, T, Plews, DJ, Hofmann, P, Laursen, PB. Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutr Res. 2021. 87:22-30. doi:10.1016/j.nutres.2020.12.012	Study Design; Intervention/Exposure
120	Clark JS, Dyer KA, Davis CR, Shivappa N, Hébert JR, Woodman R, Hodgson JM, Murphy KJ. Adherence to a Mediterranean Diet for 6 Months Improves the Dietary Inflammatory Index in a Western Population: Results from the MedLey Study. 15.	Intervention/Exposure; Outcome
121	Coates, AM, Morgillo, S, Yandell, C, Scholey, A, Buckley, JD, Dyer, KA, Hill, AM. Effect of a 12- Week Almond-Enriched Diet on Biomarkers of Cognitive Performance, Mood, and Cardiometabolic Health in Older Overweight Adults. Nutrients. 2020. 12. doi:10.3390/nu12041180	Intervention/Exposure
122	Cobos-Palacios L, Ruiz-Moreno MI, Vilches-Perez A, Vargas-Candela A, Muñoz-Úbeda M, Benítez Porres J, Navarro-Sanz A, Lopez-Carmona MD, Sanz-Canovas J, Perez-Belmonte LM, Mancebo- Sevilla JJ, Gomez-Huelgas R, Bernal-Lopez MR. Metabolically healthy obesity: Inflammatory biomarkers and adipokines in elderly population. 17.	Study Design
123	Cockerham WC, Bauldry S, Sims M. Obesity-Related Health Lifestyles of Late-Middle Age Black Americans: The Jackson Heart Study. 63.	Study Design; Intervention/Exposure
124	Comas Rovira M, Moreno Baró A, Burgaya Guiu N, Toledo Mesa L, Lesmes Heredia C, Pina Pérez S, Grimau Gallego M, Martí Malgosa L, Cochs Cosme B, Costa Pueyo J. The influence of obesity and diet quality on fetal growth and perinatal outcome.	Confounders
125	Costa-Urrutia, P, Alvarez-Farina, R, Abud, C, Franco-Trecu, V, Esparza-Romero, J, Lopez-Morales, CM, Rodriguez-Arellano, ME, Valle Leal, J, Colistro, V, Granados, J. Effect of multi-component school-based program on body mass index, cardiovascular and diabetes risks in a multi-ethnic study. BMC Pediatr. 2019. 19:401. doi:10.1186/s12887-019-1787-x	Intervention/Exposure
126	Costello E, Goodrich J, Patterson WB, Rock S, Li Y, Baumert B, Gilliland F, Goran MI, Chen Z, Alderete TL, Conti DV, Chatzi L. Diet Quality Is Associated with Glucose Regulation in a Cohort of Young Adults. 14.	Outcome
127	Couch SC, Helsley RN, Siegel FU, Saelens BE, Magazine M, Eckman MH, Summer S, Fenchel M, King EC, Bhatt DL, Steen DL. Design and Rationale for the Supermarket and Web-Based Intervention Targeting Nutrition (SuperWIN) for Cardiovascular Risk Reduction Trial.	Study Design
128	Couch, SC, Saelens, BE, Khoury, PR, Dart, KB, Hinn, K, Mitsnefes, MM, Daniels, SR, Urbina, EM. Dietary Approaches to Stop Hypertension Dietary Intervention Improves Blood Pressure and Vascular Health in Youth With Elevated Blood Pressure. Hypertension. 2021. 77:241-251. doi:10.1161/HYPERTENSIONAHA.120.16156	Intervention/Exposure; Health Status

129	Coura AGL, Arruda Neta ADCP, Lima RLFC, Bersch-Ferreira AC, Weber B, Vianna RPT. Tracking	Health Status
	of Dietary Patterns in the Secondary Prevention of Cardiovascular Disease after a Nutritional Intervention Program-A Randomized Clinical Trial. 14.	
130	Courtney, A, O'Brien, E, McAuliffe, F. The DASH (Dietary Approaches to Stop Hypertension) dietary pattern and blood pressure in pregnancy. BJOG. 2019. 126:42 doi:10.1111/1471-0528.15633	Study Design; Publication Status
131	Crane, TE, Latif, YA, Wertheim, BC, Kohler, LN, Garcia, DO, Rhee, JJ, Seguin, R, Kazlauskaite, R, Shikany, JM, Thomson, CA. Does Season of Reported Dietary Intake Influence Diet Quality? Analysis from the Women's Health Initiative. American Journal of Epidemiology. 2019. 188:1304- 1310. doi:10.1093/aje/kwz087	Outcome; Data Overlap
132	Crovetto M, Sepúlveda MJ. Relationship between dietary energy intake, nutritional status and cardiovascular risk in adults from the communes of Quellón and Chonchi, Chiloé, Chile. 63.	Study Design
133	Cuesta, M, Fuentes, M, Rubio, M, Bordiu, E, Barabash, A, Garcia de la Torre, N, Rojo-Martinez, G, Valdes, S, Soriguer, F, Vendrell, JJ, Urrutia, IM, Ortega, E, Montanya, E, Menendez, E, Lago-Sampedro, A, Gomis, R, Goday, A, Castell, C, Badia-Guillen, R, Girbes, J, Gaztambide, S, Franch-Nadal, J, Delgado Alvarez, E, Chaves, FJ, Castano, L, Calle-Pascual, AL. Incidence and regression of metabolic syndrome in a representative sample of the Spanish population: results of the cohort di@bet.es study. BMJ Open Diabetes Res Care. 2020. 8. doi:10.1136/bmjdrc-2020-001715	Outcome
134	Cui S, Yi K, Wu Y, Su X, Xiang Y, Yu Y, Tang M, Tong X, Zaid M, Jiang Y, Zhao Q, Zhao G. Fish Consumption and Risk of Stroke in Chinese Adults: A Prospective Cohort Study in Shanghai, China. 14.	Intervention/Exposure
135	Curci, R, Bianco, A, Franco, I, Campanella, A, Mirizzi, A, Bonfiglio, C, Sorino, P, Fucilli, F, Di Giovanni, G, Giampaolo, N, Pesole, PL, Osella, AR. The Effect of Low Glycemic Index Mediterranean Diet and Combined Exercise Program on Metabolic-Associated Fatty Liver Disease: A Joint Modeling Approach. Journal of Clinical Medicine. 2022. 11.	Health Status; Comparator
136	Cyr-Scully A, Howard AG, Sanzone E, Meyer KA, Du S, Zhang B, Wang H, Gordon-Larsen P. Characterizing the urban diet: development of an urbanized diet index. 21.	Study Design
137	Czekajło, A, Różańska, D, Zatońska, K, Szuba, A, Regulska-Ilow, B. Association between dietary patterns and metabolic syndrome in the selected population of Polish adults-results of the PURE Poland Study. European journal of public health. 2019. 29:335-340. doi:10.1093/eurpub/cky207	Study Design
138	Damsgaard, CT, Papadaki, A, Jensen, SM, Ritz, C, Dalskov, S-M, Hlavaty, P, Saris, WHM, Martinez, JA, Handjieva-Darlenska, T, Andersen, MR, Stender, S, Larsen, TM, Astrup, A, M?lgaard, C, Michaelsen, KF. Higher protein diets consumed ad libitum improve cardiovascular risk markers in children of overweight parents from eight European countries. Journal of Nutrition. 2013. 143:810.	Intervention/Exposure
139	Das A, Cumming R, Naganathan V, Blyth F, Couteur DGL, Handelsman DJ, Waite LM, Ribeiro RVR, Simpson SJ, Hirani V. Associations between dietary intake of total protein and sources of protein (plant vs. animal) and risk of all-cause and cause-specific mortality in older Australian men: The Concord Health and Ageing in Men Project.	Intervention/Exposure
140	Das, SK, Bukhari, AS, Taetzsch, AG, Ernst, AK, Rogers, GT, Gilhooly, CH, Hatch-Mcchesney, A, Blanchard, CM, Livingston, KA, Silver, RE, Martin, E, McGraw, SM, Chin, MK, Vail, TA, Lutz, LJ, Montain, SJ, Pittas, AG, Lichtenstein, AH, Allison, DB, Dickinson, S, Chen, X, Saltzman, E, Young, AJ, Roberts, SB. Randomized trial of a novel lifestyle intervention compared with the Diabetes Prevention Program for weight loss in adult dependents of military service members. American Journal of Clinical Nutrition. 2021. 114:1546.	Intervention/Exposure
141	de Almeida, VAH, da Costa, RA, Paganoti, CF, Mikami, FC, Sousa, AMDS, Peres, SV, Lopes, MAB, Francisco, RPV. Diet quality indices and physical activity levels associated with adequacy of gestational weight gain in pregnant women with gestational diabetes mellitus. Nutrients. 2021. 13.	Health Status
142	De Giuseppe, R, Bocchi, M, Maffoni, S, Del Bo, E, Manzoni, F, Cerbo, RM, Porri, D, Cena, H. Mediterranean diet and lifestyle habits during pregnancy: Is there an association with small for gestational age infants? an italian single centre experience. Nutrients. 2021. 13.	Study Design; Outcome
143	De La Torre, NG, Assaf-Balut, C, Varas, IJ, Del Valle, L, Durán, A, Fuentes, M, Del Prado, N, Bordiú, E, Valerio, JJ, Herraiz, MA, Izquierdo, N, Torrejón, MJ, Cuadrado, MA, De Miguel, P, Familiar, C, Runkle, I, Barabash, A, Rubio, MA, Calle-Pascual, AL. Effectiveness of following mediterranean diet recommendations in the real world in the incidence of gestational diabetes mellitus (Gdm) and adverse maternal-foetal outcomes: A prospective, universal, interventional study with a single group. the st carlos study. Nutrients. 2019. 11. doi:10.3390/nu11061210	Study Design
144	de Luis DA, Primo D, Izaola O, Aller R. Role of resistin (rs7139228) gene polymorphism with metabolic response after a hypocaloric mediterranean diet.	Intervention/Exposure; Comparator
145	de Luis Roman, D, Primo, D, Izaola, O, Aller, R. Association of the APOA-5 Genetic Variant rs662799 with Metabolic Changes after an Intervention for 9 Months with a Low-Calorie Diet with a Mediterranean Profile. Nutrients. 2022. 14.	Intervention/Exposure
146	de Luis, D, Izaola, O, Primo, D, Aller, R. A Randomized Trial with Two Hypocaloric Diets with Different Lipid Profiles and Effects on Serum Omentin-1 Levels in Obese Subjects. Disease markers. 2022. 2022:6777283.	Intervention/Exposure

147	de Luis, DA, Izaola, O, Primo, D, Aller, R. Different effects of high-protein/low-carbohydrate versus	Intervention/Exposure
	standard hypocaloric diet on insulin resistance and lipid profile: Role of rs16147 variant of neuropeptide Y. Diabetes Research and Clinical Practice. 2019. 156. doi:10.1016/j.diabres.2019.107825	
148	de Luis, DA, Primo, D, Izaola, O, Gomez Hoyos, E, Lopez Gomez, JJ, Ortola, A, Aller, R. Role of the variant in adiponectin gene rs266729 on weight loss and cardiovascular risk factors after a hypocaloric diet with the Mediterranean pattern. Nutrition. 2019. 60:1-5.	Study Design; Comparator
149	doi:10.1016/j.nut.2018.08.018 de Luis, DA, Primo, D, Izaola, O, Gomez, E, Bachiller, R. Serum Lipid and Adiponectin Improvements after a Mediterranean Dietary Pattern in Non-G-Allele Carriers of the Variant rs3774261. Lifestyle Genom. 2020. 13:164-171. doi:10.1159/000508819	Intervention/Exposure
150	de Roos, Baukje, Wood, Sharon, Bremner, David, Bashir, Shabina, Betancor, MonicaB, Fraser, WilliamD, Duthie, SusanJ, Horgan, GrahamW, Sneddon, AlanA. The nutritional and cardiovascular health benefits of rapeseed oil-fed farmed salmon in humans are not decreased compared with those of traditionally farmed salmon: a randomized controlled trial. European Journal of Nutrition. 2021. 60:2063-2075. doi:10.1007/s00394-020-02396-w	Intervention/Exposure
151	Dehghan, M, Mente, A, Rangarajan, S, Mohan, V, Lear, S, Swaminathan, S, Wielgosz, A, Seron, P, Avezum, A, Lopez-Jaramillo, P, Turbide, G, Chifamba, J, AlHabib, KF, Mohammadifard, N, Szuba, A, Khatib, R, Altuntas, Y, Liu, X, Iqbal, R, Rosengren, A. Association of egg intake with blood lipids, cardiovascular disease, and mortality in 177,000 people in 50 countries. American Journal of Clinical Nutrition. 2020. 111:795-803. doi:10.1093/ajcn/nqz348	Intervention/Exposure
152	Deierlein, AL, Ghassabian, A, Kahn, LG, Afanasyeva, Y, Mehta-Lee, SS, Brubaker, SG, Trasande, L. Dietary Quality and Sociodemographic and Health Behavior Characteristics Among Pregnant Women Participating in the New York University Children's Health and Environment Study. Front Nutr. 2021. 8:639425. doi:10.3389/fnut.2021.639425	Study Design; Outcome
153	Di Renzo, L, Cinelli, G, Dri, M, Gualtieri, P, Attina, A, Leggeri, C, Cenname, G, Esposito, E, Pujia, A, Chiricolo, G, Salimei, C, De Lorenzo, A. Mediterranean Personalized Diet Combined with Physical Activity Therapy for the Prevention of Cardiovascular Diseases in Italian Women. Nutrients. 2020. 12. doi:10.3390/nu12113456	Study Design; Intervention/Exposure
154	Dibay Moghadam S, Navarro SL, Shojaie A, Randolph TW, Bettcher LF, Le CB, Hullar MA, Kratz M, Neuhouser ML, Lampe PD, Raftery D, Lampe JW. Plasma lipidomic profiles after a low and high glycemic load dietary pattern in a randomized controlled crossover feeding study. 16.	Study Duration
155	Diez-Espino, J, Buil-Cosiales, P, Babio, N, Toledo, E, Corella, D, Ros, E, Fito, M, Gomez-Gracia, E, Estruch, R, Fiol, M, Lapetra, J, Alonso-Gomez, A, Serra-Majem, L, Pinto, X, Sorli, JV, Munoz, MA, Basora, J, Martinez-Gonzalez, MA. Impact of Life's Simple 7 on the incidence of major cardiovascular events in high-risk Spanish adults in the PREDIMED study cohort. Rev Esp Cardiol (Engl Ed). 2020. 73:205-211. doi:10.1016/j.rec.2019.05.010	Intervention/Exposure
156	Dimitratos, SM, Hercules, M, Stephensen, CB, Cervantes, E, Laugero, KD. Association between physiological stress load and diet quality patterns differs between male and female adults. Physiology and Behavior. 2021. 240. doi:10.1016/j.physbeh.2021.113538	Study Design
157	Dimosthenopoulos, C, Hatziagelaki, E. The role of nutrition in the prevention of cardiovascular diseases. Diabetes, Stoffwechsel und Herz. 2019. 28:150-151.	Study Design; Publication Status
158	Dimovski, K, Orho-Melander, M, Drake, I. A favorable lifestyle lowers the risk of coronary artery disease consistently across strata of non-modifiable risk factors in a population-based cohort. BMC Public Health. 2019. 19:1575. doi:10.1186/s12889-019-7948-x	Intervention/Exposure
159	Ding M, Fitzmaurice GM, Arvizu M, Willett WC, Manson JE, Rexrode KM, Hu FB, Chavarro JE. Associations between patterns of modifiable risk factors in mid-life to late life and longevity: 36 year prospective cohort study. 1.	Outcome
160	Ding, N, Wang, X, Tucker, KL, Weisskopf, MG, Sparrow, D, Hu, H, Park, SK. Dietary patterns, bone lead and incident coronary heart disease among middle-aged to elderly men. Environmental Research. 2019. 168:222-229. doi:10.1016/j.envres.2018.09.035	Intervention/Exposure; Comparator
161	Djuric, Z, Rifkin, S. A New Score for Quantifying Adherence to a Cancer-Preventive Mediterranean Diet. Nutrition & Cancer. 2022. 74:579-591. doi:10.1080/01635581.2021.1909738	Outcome
162	Dodd, JM, Deussen, AR, Louise, J. A Randomised Trial to Optimise Gestational Weight Gain and Improve Maternal and Infant Health Outcomes through Antenatal Dietary, Lifestyle and Exercise Advice: The OPTIMISE Randomised Trial. Nutrients. 2019. 11. doi:10.3390/nu11122911	Data Overlap
163	Domènech, M, Serra-Mir, M, Roth, I, Freitas-Simoes, T, Valls-Pedret, C, Cofán, M, López, A, Sala- Vila, A, Calvo, C, Rajaram, S, Sabaté, J, Ros, E. Effect of a walnut diet on office and 24-hour ambulatory blood pressure in elderly individuals: Findings from the WAHA randomized trial. Hypertension. 2019. 73:1049-1057. doi:10.1161/HYPERTENSIONAHA.118.12766	Intervention/Exposure
164	Domínguez-López I, Arancibia-Riveros C, Casas R, Tresserra-Rimbau A, Razquin C, Martínez- González MÁ, Hu FB, Ros E, Fitó M, Estruch R, López-Sabater MC, Lamuela-Raventós RM. Changes in plasma total saturated fatty acids and palmitic acid are related to pro-inflammatory molecule IL-6 concentrations after nutritional intervention for one year. 150.	Study Design; Outcome

165	Dorans, KS, Bazzano, LA, Qi, L, He, H, Chen, J, Appel, LJ, Chen, C-S, Hsieh, M-H, Hu, FB, Mills, KT, Nguyen, BT, O'Brien, MJ, Samet, JM, Uwaifo, GI, He, J. Effects of a Low-Carbohydrate Dietary Intervention on Hemoglobin A1c: A Randomized Clinical Trial. JAMA Network Open. 2022. 5:E2238645.	Intervention/Exposure
166	Dos Santos K, Rosado EL, da Fonseca ACP, Belfort GP, da Silva LBG, Ribeiro-Alves M, Zembrzuski VM, Campos M Jr, Zajdenverg L, Drehmer M, Martínez JA, Saunders C. A Pilot Study of Dietetic, Phenotypic, and Genotypic Features Influencing Hypertensive Disorders of Pregnancy in Women with Pregestational Diabetes Mellitus. 13.	Intervention/Exposure
167	Duan, MJ, Dekker, LH, Carrero, JJ, Navis, G. Blood lipids-related dietary patterns derived from reduced rank regression are associated with incident type 2 diabetes. Clin Nutr. 2021. 40:4712-4719. doi:10.1016/j.clnu.2021.04.046	Outcome
168	Ducharme-Smith K, Chambers R, Garcia-Larsen V, Larzelere F, Kenney A, Reid R, Nelson L, Richards J, Begay M, Barlow A, Rosenstock S. Native Youth Participating in the Together on Diabetes 12-Month Home-Visiting Program Reported Improvements in Alternative Healthy Eating Index-2010 Diet Quality Domains Likely to Be Associated With Blood Pressure and Glycemic Control. 121.	Study Design
169	Dudum, R, Juraschek, SP, Appel, LJ. Dose-dependent effects of lifestyle interventions on blood lipid levels: Results from the PREMIER trial. Patient Education and Counseling. 2019. 102:1882-1891. doi:10.1016/j.pec.2019.05.005	Intervention/Exposure
170	Ebbeling, CB, Knapp, A, Johnson, A, Wong, JMW, Greco, KF, Ma, C, Mora, S, Ludwig, DS. Effects of a low-carbohydrate diet on insulin-resistant dyslipoproteinemia-a randomized controlled feeding trial. The American journal of clinical nutrition. 2021.	Intervention/Exposure
171	Elliott LJ, Keown-Stoneman CDG, Birken CS, Jenkins DJA, Borkhoff CM, Maguire JL. Vegetarian Diet, Growth, and Nutrition in Early Childhood: A Longitudinal Cohort Study.	Intervention/Exposure
172	Eriksen, R, Perez, IG, Posma, JM, Haid, M, Sharma, S, Prehn, C, Thomas, LE, Koivula, RW, Bizzotto, R, Prehn, C, Mari, A, Giordano, GN, Pavo, I, Schwenk, JM, De Masi, F, Tsirigos, KD, Brunak, S, Vinuela, A, Mahajan, A, McDonald, TJ, Kokkola, T, Rutter, F, Teare, H, Hansen, TH, Fernandez, J, Jones, A, Jennison, C, Walker, M, McCarthy, MI, Pedersen, O, Ruetten, H, Forgie, I, Bell, JD, Pearson, ER, Franks, PW, Adamski, J, Holmes, E, Frost, G. Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI DIRECT study. EBioMedicine. 2020. 58:102932. doi:10.1016/j.ebiom.2020.102932	Intervention/Exposure
173	Estruch, R, Martínez-González, MA, Corella, D, Salas-Salvadó, J, Fitó, M, Chiva-Blanch, G, Fiol, M, Gómez-Gracia, E, Arós, F, Lapetra, J, Serra-Majem, L, Pintó, X, Buil-Cosiales, P, Sorlí, JV, Muñoz, MA, Basora-Gallisá, J, Lamuela-Raventós, RM, Serra-Mir, M, Ros, E. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. The Lancet Diabetes and Endocrinology. 2019. 7:e6-e17. doi:10.1016/S2213-8587(19)30074-9	Outcome
174	Estruch, R, Sacanella, E, Lamuela-Raventós, RM. Ideal Dietary Patterns and Foods to Prevent Cardiovascular Disease: Beware of Their Anti-Inflammatory Potential. Journal of the American College of Cardiology (JACC). 2020. 76:2194-2196. doi:10.1016/j.jacc.2020.09.575	Publication Status
175	Fagherazzi, S, Farias, DR, Belfort, GP, Dos Santos, K, Santana Vieira de Lima, T, Silva Dos Santos, M, Saunders, C. Impact of the Dietary Approaches to Stop Hypertension (DASH) diet on glycaemic control and consumption of processed and ultraprocessed foods in pregnant women with pre-gestational diabetes mellitus: a randomised clinical trial. Br J Nutr. 2021. 126:865-876. doi:10.1017/S0007114520004791	Health Status; Outcome
176	Falkenhain, K, Locke, SR, Lowe, DA, Reitsma, NJ, Lee, T, Singer, J, Weiss, EJ, Little, JP. Keyto app and device versus WW app on weight loss and metabolic risk in adults with overweight or obesity: A randomized trial. Obesity. 2021. 29:1606.	Intervention/Exposure
177	Fang, Y, Xia, J, Lian, Y, Zhang, M, Kang, Y, Zhao, Z, Wang, L, Yin, P, Wang, Z, Ye, C, Zhou, M, He, Y. The burden of cardiovascular disease attributable to dietary risk factors in the provinces of China, 2002?2018: a nationwide population-based study. The Lancet Regional Health - Western Pacific. 2023.	Intervention/Exposure
178	Farhadnejad, H, Asghari, G, Teymoori, F, Tahmasebinejad, Z, Mirmiran, P, Azizi, F. Low- carbohydrate diet and cardiovascular diseases in Iranian population: Tehran Lipid and Glucose Study. Nutrition, Metabolism and Cardiovascular Diseases. 2020. 30:581-588. doi:10.1016/j.numecd.2019.11.012	Intervention/Exposure
179	Feng HP, Yu PC, Huang SH, Huang YC, Chen CF, Sun CA, Wang BL, Chien WC, Chiang CH. The benefit of vegetarian diets for reducing blood pressure in Taiwan: a historically prospective cohort study. 42.	Study Design
180	Fernandes AC, Marinho AR, Lopes C, Ramos E. Dietary glycemic load and its association with glucose metabolism and lipid profile in young adults.	Study Design; Intervention/Exposure
181	Fernandez, CA, Potts, K, Bazzano, LA. Effect of ideal protein versus low-fat diet for weight loss: A randomized controlled trial. Obesity Science and Practice. 2021.	Intervention/Exposure

400	Formándoz Caraío, IC Martínez Sánaboz MA Barnol Lánez MD Muñoz Carach A Martínez	Intervention/Experies
182	Fernández-García, JC, Martínez-Sánchez, MA, Bernal-López, MR, Muñoz-Garach, A, Martínez- González, MA, Fitó, M, Salas-Salvadó, J, Tinahones, FJ, Ramos-Molina, B. Effect of a lifestyle	Intervention/Exposure; Comparator
	intervention program with energy-restricted Mediterranean diet and exercise on the serum	Comparator
	polyamine metabolome in individuals at high cardiovascular disease risk: A randomized clinical trial.	
	American Journal of Clinical Nutrition. 2020. 111:975.	
183	Fernandez-Lazaro, CI, Toledo, E, Buil-Cosiales, P, Salas-Salvadó, J, Corella, D, Fitó, M, Martínez,	Intervention/Exposure;
	JA, Alonso-Gómez, ÁM, Wärnberg, J, Vioque, J, Romaguera, D, López-Miranda, J, Estruch, R, Tinahones, FJ, Lapetra, J, Serra-Majem, L, Bueno-Cavanillas, A, Tur, JA, Martín Sánchez, V, Pintó,	Outcome
	X, Delgado-Rodríguez, M, Matía-Martín, P, Vidal, J, Ros, E, Vázquez, C, Daimiel, L, SanJulián, B,	
	García-Gavilán, JF, Sorlí, JV, Castañer, O, Zulet, MÁ, Tojal-Sierra, L, Pérez-Farinós, N, Oncina-	
	Canovas, A, Moñino, M, Garcia-Rios, A, Sacanella, E, Bernal-Lopez, RM, Santos-Lozano, JM,	
	Vázquez-Ruiz, Z, Muralidharan, J, Ortega-Azorín, C, Goday, A, Razquin, C, Goicolea-Güemez, L,	
	Ruiz-Canela, M, Becerra-Tomás, N, Schröder, H, Martínez González, MA. Factors associated with successful dietary changes in an energy-reduced Mediterranean diet intervention: a longitudinal	
	analysis in the PREDIMED-Plus trial. European Journal of Nutrition. 2021.	
184	Fernandez-Lazaro, CI, Toledo, E, Salas-Salvado, J, Corella, D, Fito, M, Martinez, JA, Buil-Cosiales,	Intervention/Exposure;
	P. PREDIMED-Plus trial: one-year changes in the quality of dietary carbohydrate intake and	Publication Status
	concurrent changes in cardiovascular risk factors. Annals of nutrition & metabolism. 2019. 75:20-21.	
185	doi:10.1159/000501441 Fernández-Ruiz VE, Solé-Agustí M, Armero-Barranco D, Cauli O. Weight Loss and Improvement of	Intervention/Exposure
	Metabolic Alterations in Overweight and Obese Children Through the I(2)AO(2) Family Program: A	······
	Randomized Controlled Clinical Trial. 23.	
186	Ferro, Y, Mazza, E, Salvati, M, Santariga, E, Giampà, S, Spagnuolo, R, Doldo, P, Pujia, R, Coppola,	Study Duration
	A, Gazzaruso, C, Pujia, A, Montalcini, T. Effects of a portfolio-mediterranean diet and a mediterranean diet with or without a sterol-enriched yogurt in individuals with hypercholesterolemia.	
	Endocrinology and Metabolism. 2020. 35:298-307. doi:10.3803/EnM.2020.35.2.298	
187	Fiebel, PR, Ramachandra, SS, Holton, KF. The low glutamate diet reduces blood pressure in	Intervention/Exposure
	veterans with Gulf War Illness: A CONSORT randomized clinical trial. Medicine (United States).	
188	2023. 102:E32726. Fleming, J, Kris-Etherton, P, Petersen, K, Baer, D. The dose-response effect of a mediterranean	Study Duration;
	style diet with lean beef on lipids and lipoproteins. Circulation. 2019. 139.	Publication Status
	doi:10.1161/circ.139.suppl_1.045	
189	Flor-Alemany M, Acosta-Manzano P, Migueles JH, Baena-García L, Aranda P, Aparicio VA.	Intervention/Exposure;
	Association of Mediterranean diet adherence during pregnancy with maternal and neonatal lipid, glycemic and inflammatory markers: The GESTAFIT project.	Outcome
190	Flor-Alemany M, Migueles JH, Acosta-Manzano P, Marín-Jiménez N, Baena-García L, Aparicio VA.	Intervention/Exposure;
	Assessing the Mediterranean diet adherence during pregnancy: Practical considerations based on	Outcome
191	the associations with cardiometabolic risk. 31. Francis EC, Dabelea D, Shankar K, Perng W. Maternal diet quality during pregnancy is associated	Outcome
131	with biomarkers of metabolic risk among male offspring. 64.	Outcome
192	Franco AD, Morfino P, Aimo A. Plasma acylcarnitine, risk for heart failure or atrial fibrillation, and	Study Design;
400	effects of the Mediterranean diet or obesity.	Publication Status
193	Fresán, U, Craig, WJ, Martínez-González, MA, Bes-Rastrollo, M. Nutritional quality and health effects of low environmental impact diets: The "seguimiento universidad de navarra" (SUN) Cohort.	Outcome
	Nutrients. 2020. 12:1-19. doi:10.3390/nu12082385	
194	Fresán, U, Martínez-González, MA, Sabaté, J, Bes-Rastrollo, M. Global sustainability (health,	Outcome
	environment and monetary costs) of three dietary patterns: Results from a Spanish cohort (the SUN	
195	project). BMJ Open. 2019. 9. doi:10.1136/bmjopen-2018-021541 Fung, TT, Li, Y, Bhupathiraju, SN, Bromage, S, Batis, C, Holmes, MD, Stampfer, M, Hu, FB,	Outcome
155	Deitchler, M, Willett, WC. Higher Global Diet Quality Score Is Inversely Associated with Risk of Type	Outcome
	2 Diabetes in US Women. Journal of Nutrition. 2021. 151:168S.	
196	Fysekidis, M, Kesse-Guyot, E, Valensi, P, Arnault, N, Galan, P, Hercberg, S, Cosson, E. Association	Outcome
	Between Adherence To The French Dietary Guidelines And Lower Resting Heart Rate, Longer Diastole Duration, And Lower Myocardial Oxygen Consumption. The NUTRIVASC Study. Vasc	
	Health Risk Manag. 2019. 15:463-475. doi:10.2147/VHRM.S215795	
197	Gabiola, J, Morales, D, Quizon, O, Cadiz, RI, Feliciano, K, Ruiz, RL, Aguatis, CJ, Mararac, T,	Intervention/Exposure
	Rojina, J, Garcia, A, Hedlin, H, Cullen, M, Palaniappan, L. The EffectiveNess of Llfestyle with Diet	
	and Physical Activity Education ProGram Among Prehypertensives and Stage 1 HyperTENsives in	
	an Urban Community Setting (ENLIGHTEN) Study. J Community Health. 2020. 45:478-487. doi:10.1007/s10900-019-00764-0	
198	Gadgil MD, Kanaya AM, Sands C, Chekmeneva E, Lewis MR, Kandula NR, Herrington DM. Diet	Outcome
	Patterns Are Associated With Circulating Metabolites and Lipid Profiles of South Asians in the	
	United States.	

199	Gaeini, Z, Malmir, H, Mirmiran, P, Feizy, Z, Azizi, F. Snack consumption patterns and their	Intervention/Exposure;
100	associations with risk of incident metabolic syndrome: Tehran lipid and glucose study. Nutrition and	Outcome
	Metabolism. 2023. 20.	
200	Gainfort, A, Delahunt, A, Killeen, SL, O'Reilly, SL, H?bert, JR, Shivappa, N, McAuliffe, FM. Energy- Adjusted Dietary Inflammatory Index in pregnancy and maternal cardiometabolic health: findings from the ROLO study. AJOG Global Reports. 2023. 3.	Intervention/Exposure
201	Gajda R, Raczkowska E, Sobieszczańska M, Noculak Ł, Szymala-Pędzik M, Godyla-Jabłoński M.	Study Design
	Diet Quality Variation among Polish Older Adults: Association with Selected Metabolic Diseases, Demographic Characteristics and Socioeconomic Status. 20.	,
202	Gallardo-Escribano, C, Vargas-Candela, A, Vilches-Perez, A, Munoz-Melero, M, Ruiz-Moreno, MI, Benitez-Porres, J, Romance-Garcia, AR, Rodriguez-Ortega, R, Rosa-Lopez, A, Rosales-Jaime, A, Diaz-Ruiz, J, Tinahones, FJ, Gomez-Huelgas, R, Bernal-Lopez, MR. Lifestyle Modification Improves Insulin Resistance and Carotid Intima-Media Thickness in a Metabolically Healthy Obese Prepubescent Population. J Pediatr Gastroenterol Nutr. 2021. 72:127-134. doi:10.1097/MPG.00000000002901	Study Design
203	Gao, J-W, Hao, Q-Y, Zhang, H-F, Li, X-Z, Yuan, Z-M, Guo, Y, Wang, J-F, Zhang, S-L, Liu, P-M. Low-carbohydrate diet score and coronary artery calcium progression. Arteriosclerosis, Thrombosis, and Vascular Biology. 2021. 41:491.	Intervention/Exposure
204	Gao, JW, Hao, QY, Zhang, HF, Li, XZ, Yuan, ZM, Guo, Y, Wang, JF, Zhang, SL, Liu, PM. Low- Carbohydrate Diet Score and Coronary Artery Calcium Progression: Results From the CARDIA Study. Arterioscler Thromb Vasc Biol. 2021. 41:491-500. doi:10.1161/ATVBAHA.120.314838	Intervention/Exposure; Outcome
205	Garcia-Arellano, A, Martínez-González, MA, Ramallal, R, et al. Dietary inflammatory index and all- cause mortality in large cohorts: The SUN and PREDIMED studies. Clinical Nutrition. 2019. 38:1221-1231. doi:10.1016/j.clnu.2018.05.003	Intervention/Exposure
206	Garcia-Silva, J, Borrego, IRS, Navarrete, NN, Peralta-Ramirez, MI, Águila, FJ, Caballo, VE. Efficacy of cognitive-behavioural therapy for lifestyle modification in metabolic syndrome: a randomised controlled trial with a 18-months follow-up. Psychology & health. 2022. 1.	Intervention/Exposure; Comparator
207	Garcia-Yu, IA, Garcia-Ortiz, L, Gomez-Marcos, MA, Rodriguez-Sanchez, E, Agudo-Conde, C, Gonzalez-Sanchez, J, Maderuelo-Fernandez, JA, Recio-Rodriguez, JI. Effects of Cocoa-Rich Chocolate on Blood Pressure, Cardiovascular Risk Factors, and Arterial Stiffness in Postmenopausal Women: A Randomized Clinical Trial. Nutrients. 2020. 12:1758. doi:10.3390/nu12061758	Intervention/Exposure; Comparator
208	Gardner, CD, Landry, MJ, Perelman, D, Petlura, C, Durand, LR, Aronica, L, Crimarco, A, Cunanan, KM, Chang, A, Dant, CC, Robinson, JL, Kim, SH. Effect of a Ketogenic Diet versus Mediterranean Diet on HbA1c in Individuals with Prediabetes and Type 2 Diabetes Mellitus: the Interventional Keto-Med Randomized Crossover Trial.	Intervention/Exposure
209	Garg, PK, Wilson, N, Levitan, EB, Shikany, JM, Howard, VJ, Newby, PK, Judd, S, Howard, G, Cushman, M, Soliman, EZ. Associations of dietary patterns with risk of incident atrial fibrillation in the REasons for Geographic And Racial Differences in Stroke (REGARDS).	Outcome
210	Gargari, G, Taverniti, V, Del Bo', C, Bernardi, S, Hidalgo-Liberona, N, Meroño, T, Andres-Lacueva, C, Kroon, PA, Cherubini, A, Riso, P, Guglielmetti, S. Higher bacterial DNAemia can affect the impact of a polyphenol-rich dietary pattern on biomarkers of intestinal permeability and cardiovascular risk in older subjects. 61.	Intervention/Exposure; Study Duration
211	Garousi, N, Tamizifar, B, Pourmasoumi, M, Feizi, A, Askari, G, Clark, CCT, Entezari, MH. Effects of lacto-ovo-vegetarian diet vs. standard-weight-loss diet on obese and overweight adults with non- alcoholic fatty liver disease: a randomised clinical trial. Archives of physiology and biochemistry. 2021. 1-9. doi:10.1080/13813455.2021.1890128	Health Status
212	Garralda-Del-Villar, M, Carlos-Chillerón, S, Diaz-Gutierrez, J, Ruiz-Canela, M, Gea, A, Martínez- González, MA, Bes-Rastrollo, M, Ruiz-Estigarribia, L, Kales, SN, Fernández-Montero, A. Healthy lifestyle and incidence of metabolic syndrome in the SUN cohort. Nutrients. 2019. 11. doi:10.3390/nu11010065	Intervention/Exposure; Outcome
213	Geng T, Chang X, Wang L, Liu G, Jianjun L, Khor CC, Neelakantan N, Yuan JM, Koh WP, Pan A, Dorajoo R, Heng CK. The association of genetic susceptibility to smoking with cardiovascular disease mortality and the benefits of adhering to a DASH diet: The Singapore Chinese Health Study.	Intervention/Exposure; Outcome
214	Genoni, G, Menegon, V, Monzani, A, Archero, F, Tagliaferri, F, Mancioppi, V, Peri, C, Bellone, S, Prodam, F. Healthy Lifestyle Intervention and Weight Loss Improve Cardiovascular Dysfunction in Children with Obesity. Nutrients. 2021. 13. doi:10.3390/nu13041301	Study Design; Intervention/Exposure
215	Georgoulis, M, Yiannakouris, N, Kechribari, I, Lamprou, K, Perraki, E, Vagiakis, E, Kontogianni, MD. Sustained improvements in the cardiometabolic profile of patients with obstructive sleep apnea after a weight-loss Mediterranean diet/lifestyle intervention: 12-month follow-up (6 months post-intervention) of the "MIMOSA" randomized clinical trial. Nutr Metab Cardiovasc Dis. 2023. 33:1019-1028. doi: 10.1016/j.numecd.2023.02.010. Epub 2023 Feb 18.	Intervention/Exposure; Health Status

216	Gepner, Y, Shelef, I, Komy, O, Cohen, N, Schwarzfuchs, D, Bril, N, Rein, M, Serfaty, D, Kenigsbuch, S, Zelicha, H, Yaskolka Meir, A, Tene, L, Bilitzky, A, Tsaban, G, Chassidim, Y, Sarusy, B, Ceglarek, U, Thiery, J, Stumvoll, M, Blüher, M, Stampfer, MJ, Rudich, A, Shai, I. The beneficial effects of Mediterranean diet over low-fat diet may be mediated by decreasing hepatic fat content. Journal of Hepatology. 2019. 71:379-388. doi:10.1016/j.jhep.2019.04.013	Intervention/Exposure; Comparator
217	Gerage, AM, Benedetti, TRB, Cavalcante, BR, Farah, BQ, Ritti-Dias, RM. Efficacy of a behavior change program on cardiovascular parameters in patients with hypertension: a randomized controlled trial. Einstein (Sao Paulo, Brazil). 2020. 18:eAO5227. doi:10.31744/einstein_journal/2020AO5227	Intervention/Exposure; Health Status
218	Gete, DG, Waller, M, Mishra, GD. Prepregnancy dietary patterns and risk of preterm birth and low birth weight: Findings from the Australian Longitudinal Study on Women's Health. American Journal of Clinical Nutrition. 2020. 111:1048-1058. doi:10.1093/ajcn/nqaa057	Outcome
219	Gil-Campos, M, Pérez-Ferreirós, A, Llorente-Cantarero, FJ, Anguita-Ruiz, A, Bedoya-Carpente, JJ, Kalén, A, Moreno, LA, Bueno, G, Gil, Á, Aguilera, CM, Leis, R. Association of Diet, Physical Activity Guidelines and Cardiometabolic Risk Markers in Children. Nutrients, 2021. 13: 2954. doi: 10.3390/nu13092954	Study Design
220	Giosuè A, Recanati F, Calabrese I, Dembska K, Castaldi S, Gagliardi F, Vitale M, Vaccaro O, Antonelli M, Riccardi G. Good for the heart, good for the Earth: proposal of a dietary pattern able to optimize cardiovascular disease prevention and mitigate climate change. Nutr Metab Cardiovasc Dis. 2022. 32:2772-2781. doi:10.1016/j.numecd.2022.08.001	Study Design; Outcome
221	Giussani, M, Orlando, A, Tassistro, E, Lieti, G, Patti, I, Antolini, L, Parati, G, Genovesi, S. Impact of Lifestyle Modifications on Alterations in Lipid and Glycemic Profiles and Uric Acid Values in a Pediatric Population. Nutrients. 2022. 14.	Study Design; Intervention/Exposure
222	Gkotzamanis, V, Panagiotakos, D, Yannakoulia, M, Kosmidis, M, Dardiotis, E, Hadjigeorgiou, G, Sakka, P, Scarmeas, N. Trajectories of healthy aging and their association with the Mediterranean diet: The HELIAD Study. Maturitas. 2022. 159:33.	Outcome
223	Goff, LM, Huang, P, Silva, MJ, Bordoli, C, Enayat, EZ, Molaodi, OR, Cassidy, A, Maynard, M, Harding, S. Associations of dietary intake with cardiometabolic risk in a multi-ethnic cohort: A longitudinal analysis of the Determinants of Adolescence, now young Adults, Social well-being and Health (DASH) study. British Journal of Nutrition. 2019. 121:1069-1079. doi:10.1017/S0007114519000291	Intervention/Exposure
224	Gogga P, Sliwińska A, Aleksandrowicz-Wtona E, Malgorzewicz S. Lipid profile in Polish women following lacto-ovo-vegetarian and vegan diets - preliminary study.	Study Design
225	Gómez-Sánchez, L, Rodríguez-Sánchez, E, Ramos, R, Marti-Lluch, R, Gómez-Sánchez, M, Lugones-Sánchez, C, Tamayo-Morales, O, Llamas-Ramos, I, Rigo, F, García-Ortiz, L, Gómez- Marcos, MA. The Association of Dietary Intake with Arterial Stiffness and Vascular Ageing in a Population with Intermediate Cardiovascular Risk—A MARK Study. Nutrients. 2022. 14.	Study Design; Outcome
226	GomezSanchez, M, Gomez Sanchez, L, Patino-Alonso, MC, Alonso-Dominguez, R, Sanchez- Aguadero, N, Lugones-Sanchez, C, Rodriguez Sanchez, E, Garcia Ortiz, L, Gomez-Marcos, MA. Adherence to the Mediterranean Diet in Spanish Population and Its Relationship with Early Vascular Aging according to Sex and Age: EVA Study. Nutrients. 2020. 12. doi:10.3390/nu12041025	Study Design; Outcome
227	Gonçalves, AV, Pereira, RC, Bissoli, MC, Sanson, AL, Afonso, RJCF, de Angelis-Pereira, MC. Nutrition status and quantification of blood minerals by TXRF spectroscopy in vegetarian and non- vegetarian university students. Acta Scientiarum - Health Sciences. 2019. 41. doi:10.4025/actascihealthsci.v41i1.43065	Study Design
228	González, CarlosA, Bonet, Catalina, Pablo, Miguel de, Sanchez, María José, Salamanca- Fernandez, Elena, Dorronsoro, Miren, Amiano, Pilar, Huerta, Jose María, Chirlaque, María Dolores, Ardanaz, Eva, Barricarte, Aurelio, Quirós, Jose Ramón, Agudo, Antonio, Ferrer, Marta Guadalupe Rivera. Greenhouse gases emissions from the diet and risk of death and chronic diseases in the EPIC-Spain cohort. European Journal of Public Health. 2021. 31:130-135. doi:10.1093/eurpub/ckaa167	Intervention/Exposure
229	Granado-Casas, M, Martin, M, Martínez-Alonso, M, Alcubierre, N, Hernández, M, Alonso, N, Castelblanco, E, Mauricio, D. The mediterranean diet is associated with an improved quality of life in adults with type 1 diabetes. Nutrients. 2020. 12. doi:10.3390/nu12010131	Health Status
230	Grangeiro, ÉD, Trigueiro, MS, Siais, LO, Paiva, HM, Sola-Penna, M, Alves, MR, Rosado, EL. Hypocaloric diet with lower meal frequency did not affect weight loss, body composition and insulin responsiveness, but improved lipid profile: a randomized clinical trial. Food & function. 2021. 12:12594.	Intervention/Exposure
231	Guo X, Xu X, Gao J, Wang W, Hou W, Wu X, Sun C, Li Y, Han T. Twenty-Year Trajectory-Patterns of Percentage Energy From Dietary Fat vs. Carbohydrate Throughout Adult Life and Associations With Cardio-Metabolic Disease and All-Cause Mortality. 8.	Intervention/Exposure; Country
232	Guo, Fang, Zhang, Qiang, Yin, Yue, Liu, Yan, Jiang, Hong, Yan, Ni, Lin, Jing, Liu, Xiao-hong, Ma, Le. Legume consumption and risk of hypertension in a prospective cohort of Chinese men and women. British Journal of Nutrition. 2020. 123:564-573. doi:10.1017/S0007114519002812	Intervention/Exposure

233	Gürdeniz G, Uusitupa M, Hermansen K, Savolainen MJ, Schwab U, Kolehmainen M, Brader L, Cloetens L, Herzig KH, Hukkanen J, Rosqvist F, Ulven SM, Gunnarsdóttir I, Thorsdottir I, Oresic M, Poutanen KS, Risérus U, Åkesson B, Dragsted LO. Analysis of the SYSDIET Healthy Nordic Diet randomized trial based on metabolic profiling reveal beneficial effects on glucose metabolism and blood lipids. 41.	Intervention/Exposure
234	Ha K, Nam K, Song Y. A moderate-carbohydrate diet with plant protein is inversely associated with cardiovascular risk factors: the Korea National Health and Nutrition Examination Survey 2013-2017. 19.	Study Design
235	Ha, K, Kim, K, Sakaki, JR, Chun, OK. Relative Validity of Dietary Total Antioxidant Capacity for Predicting All-Cause Mortality in Comparison to Diet Quality Indexes in US Adults. Nutrients. 2020. 12. doi:10.3390/nu12051210	Outcome
236	Hailili, G, Chen, Z, Tian, T, Fu, WH, Pei, HL, Mahan, Y, Luo, T, Alimu, D, Wang, L, Zhang, GZ, Liu, LR, Wang, DL, Dai, JH. Dietary patterns and their associations with the metabolic syndrome and predicted 10-year risk of CVD in northwest Chinese adults. British Journal of Nutrition. 2021. 126:913-922. doi:10.1017/S000711452000478X	Study Design
237	Ham, D, Cho, Y, Park, MS, Park, YS, Kim, SY, Seol, HM, Park, YM, Woo, S, Joung, H, Lim, DS. Inverse association of improved adherence to dietary guidelines with metabolic syndrome: the Seoul Metabolic Syndrome Management program. Nutr Res Pract. 2020. 14:621-636. doi:10.4162/nrp.2020.14.6.621	Study Design; Intervention/Exposure; Outcome
238	Han, L, Zhang, T, You, D, Chen, W, Bray, G, Sacks, F, Qi, L. Temporal and mediation relations of weight loss, and changes in insulin resistance and blood pressure in response to 2-year weight-loss diet interventions: the POUNDS Lost trial. European Journal of Nutrition. 2022. 61:269.	Intervention/Exposure
239	Handzlik G, Szymańska E, Pękala E, Kędzierski L, Strzałkowska D, Duława J. Low-sodium dietary approach in the management of resistant and refractory hypertension: preliminary results.	Intervention/Exposure; Publication Status
240	Hanley-Cook GT, Huybrechts I, Biessy C, Remans R, Kennedy G, Deschasaux-Tanguy M, Murray KA, Touvier M, Skeie G, Kesse-Guyot E, Argaw A, Casagrande C, Nicolas G, Vineis P, Millett CJ, Weiderpass E, Ferrari P, Dahm CC, Bueno-de-Mesquita HB, Sandanger TM, Ibsen DB, Freisling H, Ramne S, Jannasch F, van der Schouw YT, Schulze MB, Tsilidis KK, Tjønneland A, Ardanaz E, Bodén S, Cirera L, Gargano G, Halkjær J, Jakszyn P, Johansson I, Katzke V, Masala G, Panico S, Rodriguez-Barranco M, Sacerdote C, Srour B, Tumino R, Riboli E, Gunter MJ, Jones AD, Lachat C. Food biodiversity and total and cause-specific mortality in 9 European countries: An analysis of a prospective cohort study. 18.	Intervention/Exposure
241	Hansen CD, Gram-Kampmann EM, Hansen JK, Hugger MB, Madsen BS, Jensen JM, Olesen S, Torp N, Rasmussen DN, Kjærgaard M, Johansen S, Lindvig KP, Andersen P, Thorhauge KH, Brønd JC, Hermann P, Beck-Nielsen H, Detlefsen S, Hansen T, Højlund K, Thiele MS, Israelsen M, Krag A. Effect of Calorie-Unrestricted Low-Carbohydrate, High-Fat Diet Versus High-Carbohydrate, Low- Fat Diet on Type 2 Diabetes and Nonalcoholic Fatty Liver Disease : A Randomized Controlled Trial.	Intervention/Exposure; Health Status
242	Hardy, DS, Racette, SB, Garvin, JT, Gebrekristos, HT, Mersha, TB. Ancestry specific associations of a genetic risk score, dietary patterns and metabolic syndrome: a longitudinal ARIC study. BMC Med Genomics. 2021. 14:118. doi:10.1186/s12920-021-00961-8	Outcome
243	Harris S, Inoue S. Behavioral Counseling Interventions to Promote a Healthy Diet and Physical Activity for CVD Prevention in Adults Without CVD Risk Factors. 106.	Study Design
244	Harvey, CJDC, Schofield, GM, Zinn, C, Thornley, SJ, Crofts, C, Merien, FLR. Low-carbohydrate diets differing in carbohydrate restriction improve cardiometabolic and anthropometric markers in healthy adults: A randomised clinical trial. PeerJ. 2019. 2019. doi:10.7717/peerj.6273	Intervention/Exposure
245	Hashem, A, Calderon, G, Silgado, MLR, Campos, A, Cifuentes, L, Franks, S, Mcrae, A, Burton, D, Acosta, A. THE IMPACT OF DIETARY CALORIC AND MACRONUTRIENTS COMPOSITION ON INTESTINAL CHOLESTEROL ABSORPTION, FECAL BILE AND FAT EXCRETION: A DEEPER INSIGHT INTO CHOLESTEROL METABOLISM IN HUMAN OBESITY. Gastroenterology. 2021. 160:S-740.	Study Duration; Publication Status
246	Hashemi A, Vasquez K, Guishard D, Naji M, Ronning A, George-Alexander G, Vasquez D, Sylvester C, Pagano W, Khalida C, Coffran C, Ezeonu T, Fofana K, Bielopolski D, Vaughan R, Qureshi A, Tobin JN, Kost RG. Implementing DASH-aligned Congregate Meals and Self-Measured Blood Pressure in two senior centers: An open label study.	Intervention/Exposure
247	Hassapidou, M, Tziomalos, K, Lazaridou, S, Pagkalos, I, Papadimitriou, K, Kokkinopoulou, A, Tzotzas, T. The Nutrition Health Alliance (NutriHeAI) Study: A Randomized, Controlled, Nutritional Intervention Based on Mediterranean Diet in Greek Municipalities. Journal of the American College of Nutrition. 2020. 39:338-344. doi:10.1080/07315724.2019.1660928	Outcome
248	Haywood, CJ, Prendergast, LA, Lim, R, Lappas, M, Lim, WK, Proietto, J. Obesity in older adults: Effect of degree of weight loss on cardiovascular markers and medications. Clinical Obesity. 2019. 9. doi:10.1111/cob.12316	Intervention/Exposure; Comparator

249	Hazrati Gonbad, Sara, Zakerimoghadam, Masoumeh, Pashaeypoor, Shahzad, Haghani, Shima.	Study Duration
	The Effects of Home-Based Self-Care Education on Blood Pressure and Self-Care Behaviors	
	among Middle-Aged Patients with Primary Hypertension in Iran: A Randomized Clinical Controlled	
	Trial. Home Health Care Management & Practice. 2022. 34:9-16. doi:10.1177/10848223211012727	
250	He J, Yu S, Fang A, Shen X, Li K. Association between Protein Intake and the Risk of Hypertension	Intervention/Exposure
	among Chinese Men and Women: A Longitudinal Study. 14.	
251	He, D, Sun, N, Xiong, S, Qiao, Y, Ke, C, Shen, Y. Association between the proportions of	Study Design;
	carbohydrate and fat intake and hypertension risk: findings from the China Health and Nutrition	Intervention/Exposure;
	Survey. Journal of hypertension. 2021. 39:1386-1392. doi:10.1097/HJH.000000000002803	Country
252	He, FJ, Campbell, NRC, Woodward, M, MacGregor, GA. Salt reduction to prevent hypertension:	Study Design;
202	The reasons of the controversy. European Heart Journal. 2021. 42:2501-2505.	Intervention/Exposure
	doi:10.1093/eurheartj/ehab274	Intervention, Expective
253	He, M, Wang, J, Liang, Q, Li, M, Guo, H, Wang, Y, Deji, C, Sui, J, Wang, Y-W, Liu, Y, Zheng, Y,	Intervention/Exposure
233	Qian, B, Chen, H, Ma, M, Su, S, Geng, H, Zhou, W-X, Guo, X, Zhu, W-Z, Zhang, M, Chen, Z,	Intervention/Exposure
	Rensen, PCN, Hui, C-C, Wang, Y, Shi, B. Time-restricted eating with or without low-carbohydrate	
	diet reduces visceral fat and improves metabolic syndrome: A randomized trial. Cell reports.	
254	Medicine. 2022. 100777.	Study Decign
254	He, Y, Fang, Y, Bromage, S, Fung, TT, Bhupathiraju, SN, Batis, C, Deitchler, M, Fawzi, W,	Study Design
	Stampfer, MJ, Hu, FB, Willett, WC, Li, Y. Application of the Global Diet Quality Score in Chinese	
	Adults to Evaluate the Double Burden of Nutrient Inadequacy and Metabolic Syndrome. Journal of	
	Nutrition. 2021. 151:93S.	
255	He, Y, Shen, J, He, X, Dong, X. Effects of community intervention and management on preventing	Intervention/Exposure;
	and treating cardiovascular diseases among patients with dyslipidemia. International Journal of	Health Status
	Clinical and Experimental Medicine. 2021. 14:1283.	
256	Heianza, Y, Zhou, T, DiDonato, JA, Sun, Q, Rexrode, KM, Hu, FB, Bray, G, Sacks, FM, Manson,	Intervention/Exposure;
	JE, Qi, L. Long-term changes in microbiota-dependent metabolite trimethylamine n-oxide and risks	Publication Status
	of hypertension and coronary heart disease, and their modulation by diet: the nurses' health study	
	and the pounds lost trial. Circulation. 2020. 141. doi:10.1161/circ.141.suppl_1.P205	
257	Heianza, Y, Zhou, T, He, H, DiDonato, JA, Bray, GA, Sacks, FM, Qi, L. Changes in gut-microbiota-	Intervention/Exposure
	related metabolites and long-term improvements in lipoprotein subspecies in overweight and obese	·
	adults: the POUNDS lost trial. International Journal of Obesity. 2021. doi:10.1038/s41366-021-	
	00939-7	
258	Hejazi E, Emamat H, Sharafkhah M, Saidpour A, Poustchi H, Sepanlou S, Sotoudeh M, Dawsey S,	Intervention/Exposure
	Boffetta P, Abnet CC, Kamangar F, Etemadi A, Pourshams A, Malekshah AF, Berennan P,	
	Malekzadeh R, Hekmatdoost A. Dietary acid load and mortality from all causes, CVD and cancer:	
	results from the Golestan Cohort Study. 128.	
259	Hejazi, E, Emamat, H, Sharafkhah, M, Saidpour, A, Poustchi, H, Sepanlou, SG, Sotoudeh, M,	Intervention/Exposure;
	Dawsey, SM, Boffetta, P, Abnet, CC, Kamangar, F, Etemadi, A, Pourshams, A, Fazeltabar-	Country
	Malekshah, A, Brennan, P, Malekzadeh, R, Hekmatdoost, A. Dietary acid load and mortality from all	0 0 0 m m y
	causes, cardiovascular disease, and cancer: Results from the Golestan Cohort Study. British	
	Journal of Nutrition. 2021. doi:10.1017/S0007114521003135	
260	Helk, O, Widhalm, K. Effects of a low-fat dietary regimen enriched with soy in children affected with	Intervention/Exposure
200	heterozygous familial hypercholesterolemia. Clin Nutr ESPEN. 2020. 36:150-156.	intervention/Exposure
	doi:10.1016/j.clnesp.2019.09.009	
261	Henríquez-Sánchez, P, Sánchez-Villegas, A, Ruano-Rodríguez, C, Gea, A, Lamuela-Raventós, RM,	Intervention/Exposure
201	Estruch, R, Salas-Salvadó, J, Covas, MI, Corella, D, Schröder, H, Gutiérrez-Bedmar, M, Santos-	
	Lozano, JM, Pintó, X, Arós, F, Fiol, M, Tresserra-Rimbau, A, Ros, E, Martínez-González, MA, Serra-	
	Majem, L. Dietary total antioxidant capacity and mortality in the PREDIMED study. European	
060	Journal of Nutrition. 2016. 55:227. Hernaez, A, Castaner, O, Tresserra-Rimbau, A, Pinto, X, Fito, M, Casas, R, Martinez-Gonzalez,	Outcome
262		Outcome
	MA, Corella, D, Salas-Salvado, J, Lapetra, J, Gomez-Gracia, E, Aros, F, Fiol, M, Serra-Majem, L,	
	Ros, E, Estruch, R. Mediterranean Diet and Atherothrombosis Biomarkers: A Randomized	
	Controlled Trial. Mol Nutr Food Res. 2020. 64:e2000350. doi:10.1002/mnfr.202000350	
263	Hernáez, Á, Sanllorente, A, Castañer, O, Martínez-González, Á M, Ros, E, Pintó, X, Estruch, R,	Intervention/Exposure
	Salas-Salvadó, J, Corella, D, Alonso-Gómez, ÁM, Serra-Majem, L, Fiol, M, Lapetra, J, Gómez-	
	Gracia, E, de la Torre, R, Lamuela-Raventós, RM, Fitó, M. Increased Consumption of Virgin Olive	
	Oil, Nuts, Legumes, Whole Grains, and Fish Promotes HDL Functions in Humans. Molecular	
	nutrition & food research. 2019. 63:e1800847. doi:10.1002/mnfr.201800847	
264	Hernández-Alonso, P, Giardina, S, Cañueto, D, Salas-Salvadó, J, Cañellas, N, Bulló, M. Changes in	Intervention/Exposure
	Plasma Metabolite Concentrations after a Low-Glycemic Index Diet Intervention. Molecular nutrition	
	& food research. 2019. 63:e1700975. doi:10.1002/mnfr.201700975	
	Hernández-Hernández A, Oliver D, Martínez-González MÁ, Ruiz-Canela M, Eguaras S, Toledo E,	Intervention / Exmension
265	nemanuez-nemanuez A, Onver D, Martinez-Gonzalez MA, Ruiz-Canela M, Equalas S, Toleuo E.	Intervention/Exposure
265	de la Rosa PA, Bes-Rastrollo M, Gea A. Mediterranean Alcohol-Drinking Pattern and Arterial	Intervention/Exposure
265		Intervention/Exposure

266	Hernando-Redondo J, Toloba A, Benaiges D, Salas-Salvadó J, Martínez-Gonzalez MA, Corella D,	Intervention/Exposure
	Estruch R, Tinahones FJ, Ros E, Goday A, Castañer O, Fitó M. Mid- and long-term changes in	
	satiety-related hormones, lipid and glucose metabolism, and inflammation after a Mediterranean diet	
007	intervention with the goal of losing weight: A randomized, clinical trial. 9.	I
267	Hill EB, Siebert JC, Yazza DN, Ostendorf DM, Bing K, Wayland L, Scorsone JJ, Bessesen DH, MacLean PS, Melanson EL, Catenacci VA, Borengasser SJ. Proteomics, dietary intake, and	Intervention/Exposure; Comparator
	changes in cardiometabolic health within a behavioral weight-loss intervention: A pilot study. 30.	Comparator
268	Hillesheim E, Yin X, Sundaramoorthy GP, Brennan L. Using a metabotype framework to deliver	Intervention/Exposure;
	personalised nutrition improves dietary quality and metabolic health parameters: A 12-week	Comparator
	randomised controlled trial.	· · · · · · · · · · · · · · · · · · ·
269	Ho, FK, Gray, SR, Welsh, P, Petermann-Rocha, F, Foster, H, Waddell, H, Anderson, J, Lyall, D, Sattar, N, Gill, JMR, Mathers, JC, Pell, JP, Celis-Morales, C. Associations of fat and carbohydrate	Intervention/Exposure
	intake with cardiovascular disease and mortality: prospective cohort study of UK Biobank	
	participants. BMJ. 2020. 368:m688. doi:10.1136/bmj.m688	
270	Hoevenaars, FPM, Esser, D, Schutte, S, Priebe, MG, Vonk, RJ, Van Den Brink, WJ, Van Der Kamp,	Intervention/Exposure
	JW, Stroeve, JHM, Afman, LA, Wopereis, S. Whole Grain Wheat Consumption Affects Postprandial	
	Inflammatory Response in a Randomized Controlled Trial in Overweight and Obese Adults with Mild	
	Hypercholesterolemia in the Graandioos Study. Journal of Nutrition. 2019. 149:2133-2144. doi:10.1093/jn/nxz177	
271	Hosseinpour-Niazi S, Mirmiran P, Hadaegh F, Daneshpour MS, Hedayati M, Azizi F. The effect of	Health Status
	TCF7L2 polymorphisms on inflammatory markers after 16 weeks of legume-based dietary approach	
	to stop hypertension (DASH) diet versus a standard DASH diet: a randomised controlled trial. 19.	
272	Hritani R. Heart healthy diet: A modifiable tool for cardiovascular disease prevention. 8.	Publication Status
273	Hu, T, Jacobs, DR, Bazzano, LA, Bertoni, AG, Steffen, LM. Low-carbohydrate diets and prevalence,	Outcome
	incidence and progression of coronary artery calcium in the Multi-Ethnic Study of Atherosclerosis	
	(MESA). British Journal of Nutrition. 2019. 121:461-468. doi:10.1017/S0007114518003513	
274	Huang, CH, Okada, K, Matsushita, E, Uno, C, Satake, S, Arakawa Martins, B, Kuzuya, M. Dietary	Outcome
	Patterns and Muscle Mass, Muscle Strength, and Physical Performance in the Elderly: A 3-Year	
275	Cohort Study. J Nutr Health Aging. 2021. 25:108-115. doi:10.1007/s12603-020-1437-x Huang, L, Shang, L, Yang, W, Li, D, Qi, C, Xin, J, Wang, S, Yang, L, Zeng, L, Chung, MC. High	Outcome
	starchy food intake may increase the risk of adverse pregnancy outcomes: a nested case-control	outcomo
	study in the Shaanxi province of Northwestern China. BMC Pregnancy Childbirth. 2019. 19:362.	
	doi:10.1186/s12884-019-2524-z	
276	Hubacek, JA, Nikitin, Y, Ragino, Y, Stakhneva, E, Pikhart, H, Peasey, A, Holmes, MV, Stefler, D, Ryabikov, A, Verevkin, E, Bobak, M, Malyutina, S. Longitudinal trajectories of blood lipid levels in an	Intervention/Exposure
	ageing population sample of Russian Western-Siberian urban population. PLoS ONE. 2021. 16.	
277	Hudson, JL, Zhou, J, Kim, JE, Campbell, WW. Incorporating Milk Protein Isolate into an Energy-	Intervention/Exposure
	Restricted Western-Style Eating Pattern Augments Improvements in Blood Pressure and	
	Triglycerides, but Not Body Composition Changes in Adults Classified as Overweight or Obese: A	
070	Randomized Controlled Trial. Nutrients. 2020. 12. doi:10.3390/nu12030851	Intervention / Evenesure
278	Hunter, SR, Considine, RV, Mattes, RD. Almond consumption decreases android fat mass percentage in adults with high android subcutaneous adiposity but does not change HbA1c in a	Intervention/Exposure
	randomised controlled trial. British Journal of Nutrition. 2022. 127:850.	
279	Ikem, E, Halldorsson, TI, Birgisdóttir, BE, Rasmussen, MA, Olsen, SF, Maslova, E. Dietary patterns	Data Overlap
	and the risk of pregnancy-associated hypertension in the Danish National Birth Cohort: a	
	prospective longitudinal study. BJOG: An International Journal of Obstetrics and Gynaecology.	
200	2019. 126:663-673. doi:10.1111/1471-0528.15593 Innocenti, A, Fusi, J, Cammisuli, DM, Franzoni, F, Galetta, F, Pruneti, C. Effects of Mediterranean	Study Design;
280	diet and weight loss on blood-lipid profile in overweight adults with hypercholesterolemia. Progress	Intervention/Exposure
	in Nutrition. 2019. 21:889-899. doi:10.23751/pn.v21i4.8089	intervention, Expectato
281	Ivanova, OS, Maychuk, EY, Voevodina, IV. Assessment of risk factors of cardiovascular diseases	Study Design;
	and arterial stiffness in women of different ages. Russian Archives of Internal Medicine. 2020.	Intervention/Exposure;
	10:139-147. doi:10.20514/2226-6704-2020-10-2-139-147	Comparator
282	Izaola O, Primo D, de Luis D. Dietary Intervention during 9 Months with a Hypocaloric Diet, Interaction of the Genetic Variant of Adiponectin Gene rs822393 with Metabolic Parameters. 2022.	Study Design; Intervention/Exposure
283	Jack-Roberts, C, Maples, P, Kalkan, B, Edwards, K, Gilboa, E, Djuraev, I, Zou, S, Hoepner, L,	Intervention/Exposure;
200	Fordjour, L, Lee, WC, Kral, J, Dalloul, M, Jiang, X. Gestational diabetes status and dietary intake	Outcome
	modify maternal and cord blood allostatic load markers. BMJ Open Diabetes Research and Care.	
	2020. 8. doi:10.1136/bmjdrc-2020-001468	
284	Jakse, B, Jakse, B, Pinter, S, Jug, B, Godnov, U, Pajek, J, Fidler Mis, N. Dietary Intakes and	Study Design
	Cardiovascular Health of Healthy Adults in Short-, Medium-, and Long-Term Whole-Food Plant- Based Lifestyle Program, Nutrients, 2019, 12, doi:10.3390/0u12010055	
	Based Lifestyle Program. Nutrients. 2019. 12. doi:10.3390/nu12010055	

285	Jannasch F, Nickel DV, Bergmann MM, Schulze MB. A New Evidence-Based Diet Score to Capture	Study Design
	Associations of Food Consumption and Chronic Disease Risk. 14.	
286	Jaspers Faijer-Westerink, H, Stavnsbo, M, Hutten, BA, Chinapaw, M, Vrijkotte, TGM. Ideal	Intervention/Exposure;
	cardiovascular health at age 5-6 years and cardiometabolic outcomes in preadolescence. Int J Behav Nutr Phys Act. 2021. 18:33. doi:10.1186/s12966-021-01090-2	Outcome
287	Jayanama, K, Theou, O, Godin, J, Cahill, L, Shivappa, N, Hebert, JR, Wirth, MD, Park, YM, Fung,	Outcome
	TT, Rockwood, K. Relationship between diet quality scores and the risk of frailty and mortality in adults across a wide age spectrum. BMC Med. 2021. 19:64. doi:10.1186/s12916-021-01918-5	
288	Jenkins, DJA, Jones, PJH, Lamarche, B, Kendall, CWC, Faulkner, D, Cermakova, L, Gigleux, I,	Intervention/Exposure
	Ramprasath, V, De Souza, R, Ireland, C, Patel, D, Srichaikul, K, Abdulnour, S, Bashyam, B, Collier,	
	C, Hoshizaki, S, Josse, RG, Leiter, LA, Connelly, PW, Frohlich, J. Effect of a dietary portfolio of cholesterol-lowering foods given at 2 levels of intensity of dietary advice on serum lipids in	
	hyperlipidemia: A randomized controlled trial. JAMA. 2011. 306:831.	
289	Jenkins, DJA, Dehghan, M, Mente, A, Bangdiwala, SI, Rangarajan, S, Srichaikul, K, Mohan, V,	Intervention/Exposure
	Avezum, A, Diaz, R, Rosengren, A, Lanas, F, Lopez-Jaramillo, P, Li, W, Oguz, A, Khatib, R, Poirier,	
	P, Mohammadifard, N, Pepe, A, Alhabib, KF, Chifamba, J, Yusufali, AH, Iqbal, R, Yeates, K, Yusoff,	
	K, Ismail, N, Teo, K, Swaminathan, S, Liu, X, Zatonska, K, Yusuf, R, Yusuf, S, Pure Study Investigators. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N Engl J	
	Med. 2021. 384:1312-1322. doi:10.1056/NEJMoa2007123	
290	Jennings, A, Berendsen, AM, de Groot, Lcpgm, Feskens, EJM, Brzozowska, A, Sicinska, E,	Intervention/Exposure
	Pietruszka, B, Meunier, N, Caumon, E, Malpuech-Brugère, C, etal, . Mediterranean-Style Diet	
	Improves Systolic Blood Pressure and Arterial Stiffness in Older Adults. Hypertension (dallas, tex. : 1979). 2019. 73:578-586. doi:10.1161/HYPERTENSIONAHA.118.12259	
291	Jessri M, Hennessey D, Eddeen AB, Bennett C, Sanmartin C, Manuel D. Dietary Patterns	Outcome
	Attributable Mortality and Life Expectancy Lost in Canada: Evidence from Canadian National	
	Nutrition Survey Linked to Routinely-Collected Health Administrative Databases.	
292	Jiang, F, Li, Y, Xu, P, Li, J, Chen, X, Yu, H, Gao, B, Xu, B, Li, X, Chen, W. The efficacy of the Dietary Approaches to Stop Hypertension diet with respect to improving pregnancy outcomes in	Health Status
	women with hypertensive disorders. J Hum Nutr Diet. 2019. 32:713-718. doi:10.1111/jhn.12654	
293	Jiang, W, Meng, X, Hou, W, Wu, X, Wang, Y, Wang, M, Chu, X, Wang, P, Sun, C, Han, T, Li, Y.	Intervention/Exposure
	Impact of overall diet quality on association between alcohol consumption and risk of hypertension:	
	evidence from two national surveys with multiple ethnics. Eur J Clin Nutr. 2021. 75:112-122. doi:10.1038/s41430-020-00708-1	
294	Jimenez-Torres, J, Alcala-Diaz, JF, Torres-Pena, JD, Gutierrez-Mariscal, FM, Leon-Acuna, A,	Health Status;
	Gomez-Luna, P, Fernandez-Gandara, C, Quintana-Navarro, GM, Fernandez-Garcia, JC, Perez-	Outcome
	Martinez, P, Ordovas, JM, Delgado-Lista, J, Yubero-Serrano, EM, Lopez-Miranda, J. Mediterranean Diet Reduces Atherosclerosis Progression in Coronary Heart Disease: An Analysis of the	
	CORDIOPREV Randomized Controlled Trial. Stroke. 2021. STROKEAHA120033214.	
	doi:10.1161/STROKEAHA.120.033214	
295	Jin J. Behavioral Counseling Interventions to Promote a Healthy Diet and Physical Activity to	Publication Status
296	Prevent CVD in Adults Without Risk Factors. 328. Jin, J. Counseling on Healthy Diet and Physical Activity to Prevent Cardiovascular Disease. JAMA.	Study Design;
	2020. 324:2114. doi:10.1001/jama.2020.22344	Publication Status
297	Johansson, A, Acosta, S. Diet and Lifestyle as Risk Factors for Carotid Artery Disease: A	Intervention/Exposure
298	Prospective Cohort Study. Cerebrovasc Dis. 2020. 49:563-569. doi:10.1159/000510907 Joyce, BT, Wu, D, Hou, L, Dai, Q, Castaneda, SF, Gallo, LC, Talavera, GA, Sotres-Alvarez, D, Van	Study Design
250	Horn, L, Beasley, JM, Khambaty, T, Elfassy, T, Zeng, D, Mattei, J, Corsino, L, Daviglus, ML. DASH	Study Design
	diet and prevalent metabolic syndrome in the Hispanic Community Health Study/Study of Latinos.	
	Preventive Medicine Reports. 2019. 15. doi:10.1016/j.pmedr.2019.100950	
299	Judiono, , Ichwanuddin, , Olifa, N, Moesiyanti, YES, Surmita, , Purba, A. Integrated nutrition interventions reduce metabolic syndrome: study of integrated interventions by diet, behavior,	Publication Status
	physical activity on overweight in junior high school children in bandung city. Annals of nutrition &	
	metabolism. 2019. 75:388 doi:10.1159/000501751	
300	Julibert, A, Bibiloni, MDM, Bouzas, C, Martínez-González, Á M, Salas-Salvadó, J, Corella, D,	Study Design;
	Zomeño, MD, Romaguera, D, Vioque, J, Alonso-Gómez, ÁM, Wärnberg, J, Martínez, JA, Serra- Majem, L, Estruch, R, Tinahones, FJ, Lapetra, J, Pintó, X, Lopez-Miranda, J, García-Molina, L,	Intervention/Exposure
	Gaforio, JJ, Matía-Martín, P, Daimiel, L, Martín-Sánchez, V, Vidal, J, Vázquez, C, Ros, E, Toledo, E,	
	Becerra-Tomás, N, Pórtoles, O, Pérez-Vega, KA, Fiol, M, Torres-Collado, L, Tojal-Sierra, L,	
	Carabaño-Moral, R, Abete, I, Sanchez-Villegas, A, Casas, R, Bernal-López, MR, Santos-Lozano,	
	JM, Galera, A, Ugarriza, L, Ruiz-Canela, M, Babio, N, Coltell, O, Schröder, H, Konieczna, J, Orozco- Beltrán, D, Sorto-Sánchez, C, Eguaras, S, Barrubés, L, Fitó, M, Tur, JA. Total and subtypes of	
	dietary fat intake and its association with components of the metabolic syndrome in a mediterranean	
	population at high cardiovascular risk. Nutrients. 2019. 11. doi:10.3390/nu11071493	

301	Julibert, A, Del Mar Bibiloni, M, Gallardo-Alfaro, L, Abbate, M, Martinez-Gonzalez, MA, Salas- Salvado, J, Corella, D, Fito, M, Martinez, JA, Alonso-Gomez, AM, Warnberg, J, Vioque, J, Romaguera, D, Lopez-Miranda, J, Estruch, R, Tinahones, FJ, Lapetra, J, Serra-Majem, L, Cano- Ibanez, N, Martin-Sanchez, V, Pinto, X, Gaforio, JJ, Matia-Martin, P, Vidal, J, Vazquez, C, Daimiel, L, Ros, E, Sayon-Orea, C, Becerra-Tomas, N, Gimenez-Alba, IM, Castaner, O, Abete, I, Tojal- Sierra, L, Perez-Lopez, J, Notario-Barandiaran, L, Colom, A, Garcia-Rios, A, Castro-Barquero, S, Bernal, R, Santos-Lozano, JM, Fernandez-Lazaro, CI, Hernandez-Alonso, P, Saiz, C, Zomeno, MD, Zulet, MA, Bello-Mora, MC, Basterra-Gortari, J, Canudas, S, Goday, A, Tur, JA, Predimed-Plus investigators. Metabolic Syndrome Features and Excess Weight Were Inversely Associated with Nut Consumption after 1-Year Follow-Up in the PREDIMED-Plus Study. J Nutr. 2020. 150:3161-3170. doi:10.1093/jn/nxaa289	Intervention/Exposure
302	Jung, SM, Haddad, EH, Kaur, A, Sirirat, R, Kim, AY, Oda, K, Rajaram, S, Sabaté, J. A Non-Probiotic Fermented Soy Product Reduces Total and LDL Cholesterol: a Randomized Controlled Crossover Trial. Nutrients. 2021. 13. doi:10.3390/nu13020535	Intervention/Exposure
303	Kahleova H, Berrien-Lopez R, Holtz D, Green A, Sheinberg R, Gujral H, Holubkov R, Barnard ND. Nutrition for Hospital Workers During a Crisis: Effect of a Plant-Based Dietary Intervention on Cardiometabolic Outcomes and Quality of Life in Healthcare Employees During the COVID-19 Pandemic. 16.	Intervention/Exposure
304	Kahleova H, Rembert E, Nowak A, Holubkov R, Barnard ND. Effect of a diet intervention on cardiometabolic outcomes: Does race matter? A randomized clinical trial. 41.	Intervention/Exposure; Publication Status
305	Kahleova, H, McCann, J, Alwarith, J, Rembert, E, Tura, A, Holubkov, R, Barnard, ND. A plant-based diet in overweight adults in a 16-week randomized clinical trial: The role of dietary acid load. Clinical Nutrition ESPEN. 2021. 44:150.	Intervention/Exposure
306	Kahleova, H, Levin, S, Barnard, ND. Plant-Based Diets for Healthy Aging. Journal of the American College of Nutrition. 2020. 1-2. doi:10.1080/07315724.2020.1790442	Study Design; Publication Status
307	Kahleova, H, Petersen, KF, Shulman, GI, Alwarith, J, Rembert, E, Tura, A, Hill, M, Holubkov, R, Barnard, ND. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults: A Randomized Clinical Trial. JAMA Netw Open. 2020. 3:e2025454. doi:10.1001/jamanetworkopen.2020.25454	Intervention/Exposure
308	Kalkuz, S, Demircan, A. Effects of the Mediterranean diet adherence on body composition, blood parameters and quality of life in adults. Postgrad Med J. 2020. doi:10.1136/postgradmedj-2020-138667	Study Design
309	Kang J, Moser DK, Biddle MJ, Oh G, Lennie TA. Age- and sex-matched comparison of diet quality in patients with heart failure to similarly aged healthy older adults. 10.	Study Design
310	Kang, Augustine, Dulin, Akilah, Risica, Patricia Markham. Relationship between adherence to diet and physical activity guidelines and self-efficacy among black women with high blood pressure. Journal of Health Psychology. 2022. 27:663-673. doi:10.1177/1359105320967105	Study Design; Intervention/Exposure
311	Kaplan, A, Zelicha, H, Yaskolka Meir, A, Rinott, E, Tsaban, G, Levakov, G, Prager, O, Salti, M, Yovell, Y, Ofer, J, Huhn, S, Beyer, F, Witte, V, Villringer, A, Meiran, N, Emesh, TB, Kovacs, P, Von Bergen, M, Ceglarek, U, Blüher, M, Stumvoll, M, Hu, FB, Stampfer, MJ, Friedman, A, Shelef, I, Avidan, G, Shai, I. The effect of a high-polyphenol Mediterranean diet (Green-MED) combined with physical activity on age-related brain atrophy: the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT PLUS). American Journal of Clinical Nutrition. 2022. 115:1270.	Outcome; Data Overlap
312	Kapoor, D, Gupta, Y, Desai, A, Praveen, D, Joshi, R, Rozati, R, Bhatla, N, Prabhakaran, D, Reddy, P, Patel, A, Tandon, N. Lifestyle intervention programme for Indian women with history of gestational diabetes mellitus. Global Health, Epidemiology and Genomics. 2019. 4. doi:10.1017/gheg.2018.18	Country
313	Karatzi, K, Moschonis, G, Botsi, E, Liatis, S, Tsochev, K, De Miguel-Etayo, P, Kivela, J, Wikstrom, K, Dimova, R, Antal, E, Lamiquiz-Moneo, I, Rurik, I, Cardon, G, Iotova, V, Makrilakis, K, Manios, Y, On Behalf Of The Feel Diabetes-Study, Group. Lipidemic Profile Changes over a Two-Year Intervention Period: Who Benefited Most from the Feel4Diabetes Program?. Nutrients. 2020. 12. doi:10.3390/nu12123736	Intervention/Exposure
314	Karbasi S, Bahrami A, Hanafi-Bojd MY, Khorasanchi Z, Zarban A, Ferns GA. Maternal Adherence to a Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern and the Relationship to Breast Milk Nutrient Content.	Study Design
315	Karunawan, NH, Radityo, MA, Irawan, H, Poerniawan, C, Aziz, A, Affandi, M, Vera, YV, Marina, F. The effect of mobile phone-based interventions for controlling blood pressure in patients with uncontrolled hypertension grade ii. Journal of the hong kong college of cardiology. 2020. 28:76	Publication Status
316	Kebbe, M, Gao, M, Perez-Cornago, A, Jebb, SA, Piernas, C. Adherence to international dietary recommendations in association with all-cause mortality and fatal and non-fatal cardiovascular disease risk: a prospective analysis of UK Biobank participants. BMC Med. 2021. 19:134. doi:10.1186/s12916-021-02011-7	Intervention/Exposure

317	Keenan S, Cooke MB, Chen WS, Wu S, Belski R. The Effects of Intermittent Fasting and	Intervention/Exposure
	Continuous Energy Restriction with Exercise on Cardiometabolic Biomarkers, Dietary Compliance,	
	and Perceived Hunger and Mood: Secondary Outcomes of a Randomised, Controlled Trial. 14.	
318	Kelly NA, Soroka O, Onyebeke C, Pinheiro LC, Banerjee S, Safford MM, Goyal P. Association of	Outcome
	healthy lifestyle and all-cause mortality according to medication burden.	
319	Kenđel Jovanović, G, Mrakovcic-Sutic, I, Pavičić Žeželj, S, Benjak Horvat, I, Šuša, L, Rahelić, D,	Intervention/Exposure
	Klobučar Majanović, S. Metabolic and Hepatic Effects of Energy-Reduced Anti-Inflammatory Diet in	
	Younger Adults with Obesity. Canadian Journal of Gastroenterology and Hepatology. 2021. 2021.	
	doi:10.1155/2021/6649142	
320	Kendel Jovanovic, G, Mrakovcic-Sutic, I, Pavicic Zezelj, S, Susa, B, Rahelic, D, Klobucar Majanovic,	Study Design
	S. The Efficacy of an Energy-Restricted Anti-Inflammatory Diet for the Management of Obesity in	
	Younger Adults. Nutrients. 2020. 12. doi:10.3390/nu12113583	
321	Keskitalo, A, Munukka, E, Aatsinki, A, Saleem, W, Kartiosuo, N, Lahti, L, Huovinen, P, Elo, LL,	Intervention/Exposure;
	Pietilä, S, Rovio, SP, Niinikoski, H, Viikari, J, Rönnemaa, T, Lagström, H, Jula, A, Raitakari, O,	Outcome
	Pahkala, K. An Infancy-Onset 20-Year Dietary Counselling Intervention and Gut Microbiota	
	Composition in Adulthood. Nutrients. 2022. 14.	
322	Khalfallah, M, Elnagar, B, Soliman, SS, Eissa, A, Allaithy, A. The Value of Intermittent Fasting and	Intervention/Exposure
	Low Carbohydrate Diet in Prediabetic Patients for the Prevention of Cardiovascular Diseases. Papel	
	do Jejum Intermitente e da Dieta Restrita em Carboidratos na Prevenção de Doenças	
	Cardiovasculares em Pacientes Pré-Diabéticos. 2023. 120:e20220606.	
323	Khalid, GT, Mohammed, ZJ. Assessment of the risk factors of pregnancy induced hypertension	Study Design;
	among pregnant women in al-basra maternity and children hospital. Journal of Cardiovascular	Intervention/Exposure
	Disease Research. 2021. 12:159.	· · · · · · · · · · · · · · · · · · ·
324	Khan, I, Kwon, M, Shivappa, N, Hebert J R, Kim, MK. Proinflammatory Dietary Intake is Associated	Intervention/Exposure
	with Increased Risk of Metabolic Syndrome and Its Components: Results from the Population-	
	Based Prospective Study. Nutrients. 2020. 12. doi:10.3390/nu12041196	
325	Killeen SL, Phillips CM, Delahunt A, Yelverton CA, Shivappa N, Hébert JR, Kennelly MA, Cronin M,	Intervention/Exposure
	Mehegan J, McAuliffe FM. Effect of an Antenatal Lifestyle Intervention on Dietary Inflammatory	
	Index and Its Associations with Maternal and Fetal Outcomes: A Secondary Analysis of the PEARS	
- 000	Trial. 13.	Otrada Danatiana
326	Kim H, Appel LJ, Lichtenstein AH, Wong KE, Chatterjee N, Rhee EP, Rebholz CM. Metabolomic	Study Duration;
	Profiles Associated With Blood Pressure Reduction in Response to the DASH and DASH-Sodium	Outcome
207	Dietary Interventions. Kim H, Lichtenstein AH, White K, Wong KE, Miller ER 3rd, Coresh J, Appel LJ, Rebholz CM.	Intervention/Evenesures
327	Plasma Metabolites Associated with a Protein-Rich Dietary Pattern: Results from the OmniHeart	Intervention/Exposure; Study Duration
	Trial. 66.	Study Duration
328	Kim Y, Kim YM, Shin MH, Koh SB, Chang Kim H, Kim MK. Empirically identified dietary patterns	Outcome
520	and metabolic syndrome risk in a prospective cohort study: The Cardiovascular Disease Association	Outcome
	Study. 41.	
329	Kim, H, Yu, B, Li, X, Wong, KE, Boerwinkle, E, Seidelmann, SB, Levey, AS, Rhee, EP, Coresh, J,	Outcome
020	Rebholz, CM. Serum metabolomic signatures of plant-based diets and incident chronic kidney	Gutcomo
	disease. American Journal of Clinical Nutrition. 2022. 116:151.	
330	Kim, H, Lee, K, Rebholz, CM, Kim, J. Association between unhealthy plant-based diets and the	Study Design
	metabolic syndrome in adult men and women: A population-based study in South Korea. British	
	Journal of Nutrition. 2021. 125:577-590. doi:10.1017/S0007114520002895	
331	Kim, H, Lichtenstein, AH, Wong, KE, Appel, LJ, Coresh, J, Rebholz, CM. Urine Metabolites	Study Duration
	Associated with the Dietary Approaches to Stop Hypertension (DASH) Diet: Results from the DASH-	,
	Sodium Trial. Mol Nutr Food Res. 2021. 65:e2000695. doi:10.1002/mnfr.202000695	
332	Kim, MJ, Lim, H-S, Lee, H-H, Kim, T-H, Park, Y. Dietary assessment, nutrition knowledge, and	Comparator
	pregnancy outcome in high-risk pregnant Korean women. Clinical and Experimental Obstetrics and	·
	Gynecology. 2021. 48:1178.	
333	Kinnear, FJ, Lithander, FE, Searle, A, Bayly, G, Wei, C, Stensel, DJ, Thackray, AE, Hunt, L, Shield,	Intervention/Exposure
	JPH. Reducing cardiovascular disease risk among families with familial hypercholesterolaemia by	·
	improving diet and physical activity: a randomised controlled feasibility trial. BMJ Open. 2020.	
	10:e044200. doi:10.1136/bmjopen-2020-044200	
334	Kishida R, Yamagishi K, Maruyama K, Okada C, Tanaka M, Ikeda A, Hayama-Terada M, Shimizu Y,	Intervention/Exposure
	Muraki I, Umesawa M, Imano H, Brunner EJ, Sankai T, Okada T, Kitamura A, Kiyama M, Iso H.	, -
	Dietary intake of beans and risk of disabling dementia: The Circulatory Risk in Communities Study	
	(CIRCS).	
335	Klonizakis, M, Grammatikopoulou, MG, Theodoridis, X, Milner, M, Liu, Y, Chourdakis, M. Effects of	Study Duration
	long-versus short-term exposure to the mediterranean diet on skin microvascular function and	
	quality of life of healthy adults in Greece and the UK. Nutrients. 2019. 11. doi:10.3390/nu11102487	
_		

336	Knight R, Cedillo Y, Judd S, Tison S, Baker E, Moellering D. Dietary inflammation score is associated with perceived stress, depression, and cardiometabolic health risk factors among a young adult cohort of women. 51.	Study Design
337	Kobayashi, M, Sasazuki, S, Shimazu, T, Sawada, N, Yamaji, T, Iwasaki, M, Mizoue, T, Tsugane, S. Association of dietary diversity with total mortality and major causes of mortality in the Japanese population: JPHC study. Eur J Clin Nutr. 2020. 74:54-66. doi:10.1038/s41430-019-0416-y	Intervention/Exposure
338	Koeder, C, Alzughayyar, D, Anand, C, Kranz, R-M, Husain, S, Schoch, N, Hahn, A, Englert, H. The healthful plant-based diet index as a tool for obesity prevention—The healthy lifestyle community program cohort 3 study. Obesity Science and Practice. 2022.	Study Design
339	Koeder, C, Hahn, A, Englert, H. Effect of a 6-Month Controlled Lifestyle Intervention on Common Carotid Intima-Media Thickness. J Nutr Health Aging. 2021. 25:869-877. doi:10.1007/s12603-021-1628-0	Intervention/Exposure
340	Koemel NA, Senior AM, Celermajer DS, Grech A, Gill TP, Simpson SJ, Raubenheimer D, Skilton MR. Multi-Nutrient Analysis of Dietary Macronutrients with All-Cause, Cardiovascular, and Cancer Mortality: Data from NHANES 1999-2014. 15.	Intervention/Exposure
341	Kohli A, Pandey RM, Siddhu A, Reddy KS. Development of a diet pattern assessment tool for coronary heart disease risk reduction. 4.	Outcome; Country
342	Kondo K, Miura K, Okamura T, Okayama A, Ueshima H. Dietary Factors, Dietary Patterns, and Cardiovascular Disease Risk in Representative Japanese Cohorts: NIPPON DATA80/90.	Study Design
343	Kondo, K, Miura, K, Tanaka-Mizuno, S, Kadota, A, Arima, H, Okuda, N, Fujiyoshi, A, Miyagawa, N, Yoshita, K, Okamura, T, Okayama, A, Ueshima, H. Cardiovascular risk assessment chart by dietary factors in Japan: NIPPON DATA80. Circulation Journal. 2019. 83:1254-1260. doi:10.1253/circj.CJ-18-1002	Intervention/Exposure
344	Kou M, Li X, Shao X, Grundberg E, Wang X, Ma H, Heianza Y, Alfredo Martinez J, Bray GA, Sacks FM, Qi L. DNA Methylation of Birthweight-Blood Pressure Genes and Changes of Blood Pressure in Response to Weight-Loss Diets in the POUNDS Lost Trial.	Intervention/Exposure
345	Kouvari, M, Boutari, C, Chrysohoou, C, Fragkopoulou, E, Antonopoulou, S, Tousoulis, D, Pitsavos, C, Panagiotakos, DB, Mantzoros, CS, Attica study Investigators. Mediterranean diet is inversely associated with steatosis and fibrosis and decreases ten-year diabetes and cardiovascular risk in NAFLD subjects: Results from the ATTICA prospective cohort study. Clin Nutr. 2021. 40:3314-3324. doi:10.1016/j.clnu.2020.10.058	Outcome
346	Kouvari, M, Tsiampalis, T, Chrysohoou, C, Georgousopoulou, E, Notara, V, Souliotis, K, Psaltopoulou, T, Yannakoulia, M, Pitsavos, C, Panagiotakos, DB. A Mediterranean diet microsimulation modeling in relation to cardiovascular disease burden: the ATTICA and GREECS epidemiological studies. Eur J Clin Nutr. 2021. doi:10.1038/s41430-021-00967-6	Study Design
347	Krishnan S, Gertz ER, Adams SH, Newman JW, Pedersen TL, Keim NL, Bennett BJ. Effects of a diet based on the Dietary Guidelines on vascular health and TMAO in women with cardiometabolic risk factors.	Outcome
348	Krishnan, S, O'Connor, LE, Wang, Y, Gertz, ER, Campbell, WW, Bennett, BJ. Adopting a Mediterranean-style eating pattern with low, but not moderate, unprocessed, lean red meat intake reduces fasting serum trimethylamine N-oxide (TMAO) in adults who are overweight or obese. British Journal of Nutrition. 2022. 128:1738.	Outcome
349	Kunduraci, YE, Ozbek, H. Does the Energy Restriction Intermittent Fasting Diet Alleviate Metabolic Syndrome Biomarkers? A Randomized Controlled Trial. Nutrients. 2020. 12. doi:10.3390/nu12103213	Intervention/Exposure
350	Kuyumcu, A, Kuyumcu, MS. Mediterranean diet and DASH diet can be protective for ascending aortic aneurysm. Anatolian journal of cardiology. 2020. 24:98-99.	Study Design; Publication Status
351	Kvist, K, Laursen, ASD, Overvad, K, Jakobsen, MU. Substitution of Milk with Whole-Fat Yogurt Products or Cheese Is Associated with a Lower Risk of Myocardial Infarction: The Danish Diet, Cancer and Health cohort. J Nutr. 2020. 150:1252-1258. doi:10.1093/jn/nxz337	Intervention/Exposure
352	Kwaśniewska M, Pikala M, Grygorczuk O, Waśkiewicz A, Stepaniak U, Pająk A, Kozakiewicz K, Nadrowski P, Zdrojewski T, Puch-Walczak A, Tykarski A, Drygas W. Dietary Antioxidants, Quality of Nutrition and Cardiovascular Characteristics among Omnivores, Flexitarians and Vegetarians in Poland-The Results of Multicenter National Representative Survey WOBASZ. 12.	Study Design; Intervention/Exposure
353	Kwiatkowska I, Olszak J, Brożek A, Blacha A, Nowicki M, Maćkowiak K, Formanowicz P, Formanowicz D. Is It Feasible to Predict Cardiovascular Risk among Healthy Vegans, Lacto-/Ovo- Vegetarians, Pescatarians, and Omnivores under Forty?. 20.	Study Design; Intervention/Exposure
354	Lafrenière, J, Carbonneau, E, Laramée, C, Corneau, Ć, Robitaille, J, Labonté, ME, Lamarche, B, Lemieux, S. Is the Canadian healthy eating index 2007 an appropriate diet indicator of metabolic health? insights from dietary pattern analysis in the PREDISE study. Nutrients. 2019. 11. doi:10.3390/nu11071597	Study Design
355	Lagstrom, H, Stenholm, S, Akbaraly, T, Pentti, J, Vahtera, J, Kivimaki, M, Head, J. Diet quality as a predictor of cardiometabolic disease-free life expectancy: the Whitehall II cohort study. Am J Clin Nutr. 2020. 111:787-794. doi:10.1093/ajcn/nqz329	Outcome

356	Laitinen, TomiT, Nuotio, Joel, Rovio, SuviP, Niinikoski, Harri, Juonala, Markus, Magnussen, CostanG, Jokinen, Eero, Lagström, Hanna, Jula, Antti, Viikari, JormaSA, Rönnemaa, Tapani, Simell, Olli, Raitakari, OlliT, Pahkala, Katja. Dietary Fats and Atherosclerosis From Childhood to Adulthood.	Intervention/Exposure
357	Pediatrics. 2020. 145:1-9. doi:10.1542/peds.2019-2786 Laitinen, TT, Nuotio, J, Niinikoski, H, Juonala, M, Rovio, SP, Viikari, JSA, Ronnemaa, T, Magnussen, CG, Sabin, M, Burgner, D, Jokinen, E, Lagstrom, H, Jula, A, Simell, O, Raitakari, OT, Pahkala, K. Attainment of Targets of the 20-Year Infancy-Onset Dietary Intervention and Blood Pressure Across Childhood and Young Adulthood: The Special Turku Coronary Risk Factor Intervention Project (STRIP). Hypertension. 2020. 76:1572-1579. doi:10.1161/HYPERTENSIONAHA.120.15075	Intervention/Exposure
358	Lampure, A, Adriouch, S, Castetbon, K, Deglaire, A, Schlich, P, Peneau, S, Fezeu, L, Hercberg, S, Mejean, C. Relationship between sensory liking for fat, sweet or salt and cardiometabolic diseases: mediating effects of diet and weight status. Eur J Nutr. 2020. 59:249-261. doi:10.1007/s00394-019-01904-x	Intervention/Exposure
359	Lang X, Liu Z, Islam S, Han G, Rangarajan S, Tse LA, Mushtaha M, Wang J, Hu L, Qiang D, Zhu Y, Yusuf S, Lin Y, Hu B, On Behalf Of The Pure-China Investigators. Interaction of Depression and Unhealthy Diets on the Risk of Cardiovascular Diseases and All-Cause Mortality in the Chinese Population: A PURE Cohort Substudy. 14.	Intervention/Exposure; Country
360	Laouali N, Benmarhnia T, Oulhote Y. Potential benefits of joint hypothetical interventions on diet, lead, and cadmium on mortality in US adults. 21.	Intervention/Exposure
361	Larsson, SC, Wolk, A, Bäck, M. Dietary patterns, food groups, and incidence of aortic valve stenosis: A prospective cohort study. International Journal of Cardiology. 2019. 283:184-188. doi:10.1016/j.ijcard.2018.11.007	Outcome
362	Latorre-Millan, M, Ruperez, AI, Gonzalez-Gil, EM, Santaliestra-Pasias, A, Vazquez-Cobela, R, Gil- Campos, M, Aguilera, CM, Gil, A, Moreno, LA, Leis, R, Bueno, G. Dietary Patterns and Their Association with Body Composition and Cardiometabolic Markers in Children and Adolescents: Genobox Cohort. Nutrients. 2020. 12. doi:10.3390/nu12113424	Study Design
363	Laursen, AnneSofieD, Thomsen, AnneL, Beck, Anne, Overvad, Kim, Jakobsen, MarianneU. Theoretical substitutions between dairy products and all-cause and cause-specific mortality. Results from the Danish diet, cancer and health cohort. British Journal of Nutrition. 2022. 127:1557-1566. doi:10.1017/S0007114521002464	Study Design; Intervention/Exposure
364	Lavie, M, Lavie, I, Maslovitz, S. Paleolithic diet during pregnancy-A potential beneficial effect on metabolic indices and birth weight. Eur J Obstet Gynecol Reprod Biol. 2019. 242:7-11. doi:10.1016/j.ejogrb.2019.08.013	Study Design
365	Lazarova SV, Sutherland JM, Jessri M. Adherence to emerging plant-based dietary patterns and its association with cardiovascular disease risk in a nationally representative sample of Canadian adults.	Study Design
366	Lee C, Yang Q, Wolever RQ, Vorderstrasse A. Health Behavior Trajectories in High Cardiovascular Risk Populations: Secondary Analysis of a Clinical Trial. 36.	Intervention/Exposure
367	Lee E, Kim JM. The association of the Korean Healthy Eating Index with chronic conditions in middle-aged single-person households. 17.	Study Design
368	Lee J, Hoang T, Lee S, Kim J. Association Between Dietary Patterns and Dyslipidemia in Korean Women. 8.	Study Design
369	Lee, Y-N, Kang, P. Relationship between the 10-Year Risk for Atherosclerotic Cardiovascular Disease and the Dietary Inflammatory Index among Korean Adults Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES). BioMed Research International. 2020. 2020.	Study Design
370	Lee, YQ, Colega, M, Sugianto, R, Lai, JS, Godfrey, KM, Tan, KH, Shek, LP-C, Loy, SL, Müller-Riemenschneider, F, Padmapriya, N, Chong, YS, Eriksson, JG, Chan, JKY, Chan, S-Y, Tai, BC, Chong, MF-F. Tracking of dietary patterns between pregnancy and 6 years post-pregnancy in a multiethnic Asian cohort: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study. European Journal of Nutrition. 2022. 61:985.	Outcome; Comparator
371	Lee-Bravatti MA, O'Neill HJ, Wurth RC, Sotos-Prieto M, Gao X, Falcon LM, Tucker KL, Mattei J. Lifestyle Behavioral Factors and Integrative Successful Aging Among Puerto Ricans Living in the Mainland United States. 76.	Outcome
372	Lehtovirta, M, Matthews, LA, Laitinen, TT, Nuotio, J, Niinikoski, H, Rovio, SP, Lagstrom, H, Viikari, JSA, Ronnemaa, T, Jula, A, Ala-Korpela, M, Raitakari, OT, Pahkala, K. Achievement of the Targets of the 20-Year Infancy-Onset Dietary Intervention-Association with Metabolic Profile from Childhood to Adulthood. Nutrients. 2021. 13. doi:10.3390/nu13020533	Intervention/Exposure
373	Lennerz BS, Mey JT, Henn OH, Ludwig DS. Behavioral Characteristics and Self-Reported Health Status among 2029 Adults Consuming a "Carnivore Diet". 5.	Study Design

274	Leokinen HM Tringhem M Kerialainen H leo Teuru TK Historenta Luema HL Marnila DL	Intervention/Eveneuro
374	Leskinen, HM, Tringham, M, Karjalainen, H, Iso-Touru, TK, Hietaranta-Luoma, HL, Marnila, PJ, Pihlava, JM, Hurme, T, Kankaanpaa, SJ, Puolijoki, H, Akerman, K, Tanner, L, Sandell, M,	Intervention/Exposure
	Vahakangas, K, Hopia, A, Tahvonen, R, Rokka, LS. APOE Genotype Disclosure and Lifestyle	
	Advice in a Randomized Intervention Study with Finnish Participants. J Nutr. 2021. 151:85-97.	
	doi:10.1093/jn/nxaa316	
375	Leu, HB, Chung, CM, Chen, JW, Pan, WH. The Mediterranean diet reduces the genetic risk of	Intervention/Exposure;
	chromosome 9p21 for myocardial infarction in an Asian population community cohort. Sci Rep.	Country
	2019. 9:18405. doi:10.1038/s41598-019-54938-w	
376	Leyva, F, Guerrero, E, Arcila, D, Serralde, A, Flores, A, García, M, Gulías, A, Sutherland, M, Castillo-Martínez, L. Association between stages of change regarding weight reduction in patients	Outcome; Comparator
	with cardiovascular risk factors: A randomized controlled trial. Asociación entre las etapas de	
	cambio con la reducción de peso en pacientes con factores de riesgo cardiovascular: Ensayo	
	clínico controlado. 2021. 48:381.	
377	Li S, Liu Z, Joseph P, Hu B, Yin L, Tse LA, Rangarajan S, Wang C, Wang Y, Islam S, Liu W, Lu F,	Country
	Li Y, Hou Y, Qiang D, Zhao Q, Li N, Lei R, Chen D, Han A, Liu G, Zhang P, Zhi Y, Liu C, Yang J,	
	Resalaiti A, Ma H, Ma Y, Liu Y, Xing X, Xiang Q, Liu Z, Sheng Y, Tang J, Liu L, Yusuf S, Li W.	
	Modifiable risk factors associated with cardiovascular disease and mortality in China: a PURE	
378	substudy. Li, J, Guasch-Ferre, M, Chung, W, Ruiz-Canela, M, Toledo, E, Corella, D, Bhupathiraju, SN, Tobias,	Comparator
570	DK, Tabung, FK, Hu, J, Zhao, T, Turman, C, Feng, YA, Clish, CB, Mucci, L, Eliassen, AH,	Comparator
	Costenbader, KH, Karlson, EW, Wolpin, BM, Ascherio, A, Rimm, EB, Manson, JE, Qi, L, Martinez-	
	Gonzalez, MA, Salas-Salvado, J, Hu, FB, Liang, L. The Mediterranean diet, plasma metabolome,	
	and cardiovascular disease risk. Eur Heart J. 2020. 41:2645-2656. doi:10.1093/eurheartj/ehaa209	
379	Li, L, Shan, Z, Wan, Z, Li, R, Geng, T, Lu, Q, Zhu, K, Qiu, Z, Zhang, X, Liu, Y, Liu, L, Pan, A, Liu, G.	Intervention/Exposure
	Associations of lower-carbohydrate and lower-fat diets with mortality among people with	
	prediabetes. The American journal of clinical nutrition. 2022.	0
380	Li, M, Shi, Z. Ultra-Processed Food Consumption Associated with Incident Hypertension among Chinese Adults—Results from China Health and Nutrition Survey 1997–2015. Nutrients. 2022. 14.	Country
381	Li, Q, Liu, C, Zhang, S, Li, R, Zhang, Y, He, P, Zhang, Z, Liu, M, Zhou, C, Ye, Z, Wu, Q, Li, H, Qin,	Intervention/Exposure
	X. Dietary carbohydrate intake and new-onset hypertension: A nationwide cohort study in China.	
	Hypertension. 2021. 422-430. doi:10.1161/HYPERTENSIONAHA.120.16751	
382	Li, S, Lin, G, Chen, J, Chen, Z, Xu, F, Zhu, F, Zhang, J, Yuan, S. The effect of periodic ketogenic	Health Status
	diet on newly diagnosed overweight or obese patients with type 2 diabetes. BMC endocrine	
383	disorders. 2022. 22:34. Li, Y, Wang, DD, Satija, A, Ivey, KL, Li, J, Wilkinson, JE, Li, R, Baden, M, Chan, AT, Huttenhower,	Study Design
505	C, Rimm, EB, Hu, FB, Sun, Q. Plant-Based Diet Index and Metabolic Risk in Men: Exploring the	Study Design
	Role of the Gut Microbiome. Journal of Nutrition. 2021. 151:2780.	
384	Li, Y, Schoufour, J, Wang, DD, Dhana, K, Pan, A, Liu, X, Song, M, Liu, G, Shin, HJ, Sun, Q, Al-	Intervention/Exposure;
	Shaar, L, Wang, M, Rimm, EB, Hertzmark, E, Stampfer, MJ, Willett, WC, Franco, OH, Hu, FB.	Outcome
	Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes:	
	prospective cohort study. BMJ. 2020. 368:16669. doi:10.1136/bmj.16669	Otrada Danimu
385	Li, Z, Heber, D. The Pritikin Diet. JAMA. 2020. 323:1104. doi:10.1001/jama.2019.21266	Study Design; Publication Status
386	Liang, Jie, Zhao, Jun-Kang, Wang, Ju-Ping, Wang, Tong. Association between animal source foods	Intervention/Exposure
	consumption and risk of hypertension: a cohort study. European Journal of Nutrition. 2021. 60:2469-	
	2483. doi:10.1007/s00394-020-02423-w	
387	Liese, AD, Couch, SC, The, NS, Crandell, JL, Lawrence, JM, Crume, TL, Mayer-Davis, EJ, Zhong,	Health Status
	VW, Urbina, EM. Association between diet quality indices and arterial stiffness in youth with type 1	
	diabetes: SEARCH for Diabetes in Youth Nutrition Ancillary Study. J Diabetes Complications. 2020.	
388	34:107709. doi:10.1016/j.jdiacomp.2020.107709 Lim GB. Mediterranean diet superior to low-fat diet for secondary prevention of CVD. 19.	Publication Status
389	Lim, CC, Hayes, RB, Ahn, J, Shao, Y, Silverman, DT, Jones, RR, Thurston, GD. Mediterranean Diet	Intervention/Exposure;
	and the Association between Air Pollution and Cardiovascular Disease Mortality Risk. Circulation. 2019. 139:1766-1775. doi:10.1161/CIRCULATIONAHA.118.035742	Comparator
390	Lim, CGY, Tai, ES, van Dam, RM. Replacing dietary carbohydrates and refined grains with different	Intervention/Exposure
	alternatives and risk of cardiovascular diseases in a multi-ethnic Asian population. The American	
	journal of clinical nutrition. 2022.	
391	Lim, SX, Cox, V, Rodrigues, N, Colega, MT, Barton, SJ, Childs, CE, Conlon, CA, Wall, CR, Cutfield,	Study Design;
	WS, Chan, S-Y, Godfrey, KM, Chong, MF-F. Evaluation of Preconception Dietary Patterns in	Outcome
	Women Enrolled in a Multisite Study. Current Developments in Nutrition. 2022. 6.	
392	Lingfors, H, Persson, LG. All-cause mortality among young men 24-26 years after a lifestyle health	Intervention/Exposure;
	dialogue in a Swedish primary care setting: A longitudinal follow-up register study. BMJ Open. 2019. 9. doi:10.1136/bmjopen-2018-022474	Outcome

393	Lisón, JF, Palomar, G, Mensorio, MS, Banõs, RM, Cebolla-Martí, A, Botella, C, Benavent-Caballer,	Intervention/Exposure
	V, Rodilla, E. Impact of a Web-Based Exercise and Nutritional Education Intervention in Patients	
	Who Are Obese with Hypertension: Randomized Wait-List Controlled Trial. Journal of Medical	
	Internet Research. 2020. 22. doi:10.2196/14196	
394	Liu L, Yang Y, Zhao Y, Zhang T. Burden of stroke and its risk factors in Yunnan province of China,	Intervention/Exposure
395	Liu, J, Zhang, Y, Lavie, CJ, Tabung, FK, Xu, J, Hu, Q, He, L, Zhang, Y. Associations of C-reactive	Intervention/Exposure
	protein and fibrinogen with mortality from all-causes, cardiovascular disease and cancer among U.S.	
	adults. Prev Med. 2020. 139:106044. doi:10.1016/j.ypmed.2020.106044	0
396	Liu, Q, Wen, Q, Lv, J, Shi, Z, Guo, Y, Pei, P, Du, H, Yang, L, Chen, Y, Zhang, X, Schmidt, D,	Outcome; Country
	Sansome, S, Chen, J, Yu, C, Chen, Z, Li, L. The Prospective Associations of Lipid Metabolism-	
207	Related Dietary Patterns with the Risk of Diabetes in Chinese Adults. Nutrients. 2022. 14.	Intervention / Exposition
397	Liu, Weida, Hu, Bo, Dehghan, Mahshid, Mente, Andrew, Wang, Chuangshi, Yan, Ruohua,	Intervention/Exposure;
	Rangarajan, Sumathy, Tse, Lap Ah, Yusuf, Salim, Liu, Xiaoyun, Wang, Yang, Qiang, Deren, Hu, Lihua, Han, Aiying, Tang, Xincheng, Liu, Lisheng, Li, Wei. Fruit, vegetable, and legume intake and	Country
	the risk of all-cause, cardiovascular, and cancer mortality: A prospective study. Clinical Nutrition.	
	2021. 40:4316-4323. doi:10.1016/j.clnu.2021.01.016	
398	Liu, Y, Sun, P, Shuai, P, Qiao, Q, Li, T. Fat-restricted low-glycemic index diet controls weight and	Study Design
000	improves blood lipid profile: A pilot study among overweight and obese adults in Southwest China.	Olday Design
	Medicine (Baltimore). 2021. 100:e26107. doi:10.1097/MD.00000000026107	
399	Livingstone, KM, Abbott, G, Ward, J, Bowe, SJ. Unhealthy lifestyle, genetics and risk of	Comparator
	cardiovascular disease and mortality in 76,958 individuals from the UK biobank cohort study.	
	Nutrients. 2021. 13.	
400	Llanaj, E, Vincze, F, Kosa, Z, Bardos, H, Dioszegi, J, Sandor, J, Adany, R. Deteriorated Dietary	Study Design
	Patterns with Regards to Health and Environmental Sustainability among Hungarian Roma Are Not	
	Differentiated from Those of the General Population. Nutrients. 2021. 13. doi:10.3390/nu13030721	
401	Lo BK, Graham ML, Folta SC, Strogatz D, Parry SA, Seguin-Fowler RA. Physical activity and	Intervention/Exposure;
	healthy eating behavior changes among rural women: an exploratory mediation analysis of a	Outcome
	randomized multilevel intervention trial. 11.	
402	Lo, K, Glenn, AJ, Yeung, S, Kendall, CWC, Sievenpiper, JL, Jenkins, DJA, Woo, J. Prospective	Intervention/Exposure
	association of the portfolio diet with all-cause and cause-specific mortality risk in the mr. OS and ms.	
	OS study. Nutrients. 2021. 13.	
403	Lockard B, Mardock M, Oliver JM, Byrd M, Simbo S, Jagim AR, Kresta J, Baetge CC, Jung YP,	Intervention/Exposure;
	Koozehchian MS, Khanna D, Rasmussen C, Kreider RB. Comparison of Two Diet and Exercise	Study Duration
40.4	Approaches on Weight Loss and Health Outcomes in Obese Women. 19.	later continu (Evenerum
404	López-Contreras, IN, Vilchis-Gil, J, Klünder-Klünder, M, Villalpando-Carrión, S, Flores-Huerta, S. Dietary habits and metabolic response improve in obese children whose mothers received an	Intervention/Exposure
	intervention to promote healthy eating: randomized clinical trial. BMC public health. 2020. 20:1240.	
	doi:10.1186/s12889-020-09339-4	
405	Lopez-Jaramillo P, Joseph P, Lopez-Lopez JP, Lanas F, Avezum A, Diaz R, Camacho PA, Seron P,	Intervention/Exposure
400	Oliveira G, Orlandini A, Rangarajan S, Islam S, Yusuf S. Risk factors, cardiovascular disease, and	intervention/Exposure
	mortality in South America: a PURE substudy.	
406	López-Jaramillo P, López-López JP. Cardiovascular risk factors and death in South America.	Publication Language
407	Lu Q, Chen J, Li R, Wang Y, Tu Z, Geng T, Liu L, Pan A, Liu G. Healthy lifestyle, plasma	Health Status
400	metabolites, and risk of cardiovascular disease among individuals with diabetes.	Otrada Decima
408	Lüscher, TF. Nutrition, obesity, diabetes, and cardiovascular outcomes: A deadly association.	Study Design;
409	European Heart Journal. 2020. 41:2603-2607. doi:10.1093/eurheartj/ehaa622 Lynch, E, Emery-Tiburcio, E, Dugan, S, White, FS, Thomason, C, Jenkins, L, Feit, C, Avery-Mamer,	Publication Status Study Design
409	E, Wang, Y, Mack, L, Ragland, A. Results of ALIVE: A Faith-Based Pilot Intervention to Improve	Study Design
	Diet Among African American Church Members. Progress in community health partnerships :	
	research, education, and action. 2019. 13:19-30. doi:10.1353/cpr.2019.0005	
410	Ma J, Zeng F, Guan Q, Han L. Educational level differences in the primary and secondary	Study Design;
	prevention of stroke.	Intervention/Exposure;
		Country
411	Ma, J, Rebholz, CM, Braun, KVE, Reynolds, LM, Aslibekyan, S, Xia, R, Biligowda, NG, Huan, T, Liu,	Intervention/Exposure;
	C, Mendelson, MM, Joehanes, R, Hu, EA, Vitolins, MZ, Wood, AC, Lohman, K, Ochoa-Rosales, C,	Outcome
	van Meurs, J, Uitterlinden, A, Liu, Y, Elhadad, MA, Heier, M, Waldenberger, M, Peters, A, Colicino,	
	E, Whitsel, EA, Baldassari, A, Gharib, SA, Sotoodehnia, N, Brody, JA, Sitlani, CM, Tanaka, T, Hill,	
	WD, Corley, J, Deary, IJ, Zhang, Y, Schottker, B, Brenner, H, Walker, ME, Ye, S, Nguyen, S,	
	Pankow, J, Demerath, EW, Zheng, Y, Hou, L, Liang, L, Lichtenstein, AH, Hu, FB, Fornage, M,	
	Voortman, T, Levy, D. Whole Blood DNA Methylation Signatures of Diet Are Associated With	
	Cardiovascular Disease Risk Factors and All-Cause Mortality. Circ Genom Precis Med. 2020.	
	13:e002766. doi:10.1161/CIRCGEN.119.002766	

412	Ma, Y, Sun, Y, Sun, L, Liu, X, Zeng, R, Lin, X, Li, Y. Effects of gut microbiota and fatty acid	Intervention/Exposure
412	metabolism on dyslipidemia following weight-loss diets in women: Results from a randomized controlled trial. Clinical Nutrition. 2021. 40:5511.	
413	MacDonald CJ, Madkia AL, Mounier-Vehier C, Severi G, Boutron-Ruault MC. Associations between saturated fat intake and other dietary macronutrients and incident hypertension in a prospective study of French women.	Intervention/Exposure
414	Macias, S, Kirma, J, Yilmaz, A, Moore, SE, McKinley, MC, McKeown, PP, Woodside, JV, Graham, SF, Green, BD. Application of 1H-NMR Metabolomics for the Discovery of Blood Plasma Biomarkers of a Mediterranean Diet. Metabolites. 2019. 9. doi:10.3390/metabo9100201	Study Design; Outcome
415	Maddison, R, Hargreaves, EA, Jiang, Y, Calder, AJ, Wyke, S, Gray, CM, Hunt, K, Lubans, DR, Eyles, H, Draper, N, Heke, I, Kara, S, Sundborn, G, Arandjus, C, Gao, L, Lee, P, Lim, M, Marsh, S. Rugby Fans in Training New Zealand (RUFIT NZ): a randomized controlled trial to assess the effectiveness of a healthy lifestyle program for overweight men delivered through professional rugby clubs. The international journal of behavioral nutrition and physical activity. 2023. 20:37.	Intervention/Exposure
416	Madlala SS, Hill J, Kunneke E, Kengne AP, Peer N, Faber M. Dietary Diversity and its Association with Nutritional Status, Cardiometabolic Risk Factors and Food Choices of Adults at Risk for Type 2 Diabetes Mellitus in Cape Town, South Africa. 14.	Study Design
417	Magriplis, E, Panagiotakos, D, Mitsopoulou, AV, Karageorgou, D, Bakogianni, I, Dimakopoulos, I, Micha, R, Michas, G, Chourdakis, M, Chrousos, GP, Roma, E, Zampelas, A. Prevalence of hyperlipidaemia in adults and its relation to the Mediterranean diet: the Hellenic National Nutrition and Health Survey (HNNHS). Eur J Prev Cardiol. 2019. 26:1957-1967. doi:10.1177/2047487319866023	Study Design
418	Mahjoub, F, Ben Jemaa, H, Ben Sabeh, F, Ben Amor, N, Gamoudi, A, Jamoussi, H. Impact of nutrients and Mediterranean diet on the occurrence of gestational diabetes. Libyan Journal of Medicine. 2021. 16. doi:10.1080/19932820.2021.1930346	Study Design; Outcome
419	Maki, KC, Wilcox, ML, Dicklin, MR, Buggia, M, Palacios, OM, Maki, CE, Kramer, M. Substituting Lean Beef for Carbohydrate in a Healthy Dietary Pattern Does Not Adversely Affect the Cardiometabolic Risk Factor Profile in Men and Women at Risk for Type 2 Diabetes. J Nutr. 2020. 150:1824-1833. doi:10.1093/jn/nxaa116	Study Duration
420	Malinowska AM. Easy Diet Screener: A quick and easy tool for determining dietary patterns associated with lipid profile and body adiposity.	Study Design; Intervention/Exposure
421	Manoogian, ENC, Chaix, A, Panda, S. When to Eat: The Importance of Eating Patterns in Health and Disease. J Biol Rhythms. 2019. 34:579-581. doi:10.1177/0748730419892105	Study Design; Intervention/Exposure; Publication Status
422	Margerison, C, Riddell, LJ, McNaughton, SA, Nowson, CA. Associations between dietary patterns and blood pressure in a sample of Australian adults. Nutr J. 2020. 19:5. doi:10.1186/s12937-019-0519-2	Study Design
423	Martíncrespo-Blanco, MC, Varillas-Delgado, D, Blanco-Abril, S, Cid-Exposito, MG, Robledo-Martín, J. Effectiveness of an Intervention Programme on Adherence to the Mediterranean Diet in a Preschool Child: A Randomised Controlled Trial. Nutrients. 2022. 14.	Outcome
424	Martinez-Gonzalez, MA, Fernandez-Lazaro, CI, Toledo, E, Diaz-Lopez, A, Corella, D, Goday, A, Romaguera, D, Vioque, J, Alonso-Gomez, AM, Warnberg, J, Martinez, JA, Serra-Majem, L, Estruch, R, Tinahones, FJ, Lapetra, J, Pinto, X, Tur, JA, Lopez-Miranda, J, Cano-Ibanez, N, Delgado- Rodriguez, M, Matia-Martin, P, Daimiel, L, Sanchez, VM, Vidal, J, Vazquez, C, Ros, E, Buil- Cosiales, P, Portoles, O, Soria-Florido, M, Konieczna, J, Navarrete-Munoz, EM, Tojal-Sierra, L, Fernandez-Garcia, JC, Abete, I, Henriquez-Sanchez, P, Munoz-Garach, A, Santos-Lozano, JM, Corbella, E, Biblioni, MDM, Becerra-Tomas, N, Barragan, R, Castaner, O, Fiol, M, Garcia de Ia Hera, M, Bello-Mora, MC, Gea, A, Babio, N, Fito, M, Ruiz-Canela, M, Zazpe, I, Salas-Salvado, J. Carbohydrate quality changes and concurrent changes in cardiovascular risk factors: a longitudinal analysis in the PREDIMED-Plus randomized trial. Am J Clin Nutr. 2020. 111:291-306. doi:10.1093/ajcn/nqz298	Intervention/Exposure; Comparator
425	Martinez-Perez, C, San-Cristobal, R, Guallar-Castillon, P, Martínez-González, MÁ, Salas-Salvadó, J, Corella, D, Castañer, O, Martinez, JA, Alonso-Gómez, ÁM, Wärnberg, J, Vioque, J, Romaguera, D, López-Miranda, J, Estruch, R, Tinahones, FJ, Lapetra, J, Serra-Majem, L, Bueno-Cavanillas, A, Tur, JA, Sánchez, VM, Pintó, X, Gaforio, JJ, Matía-Martín, P, Vidal, J, Vázquez, C, Ros, E, Bes-Rastrollo, M, Babio, N, Sorlí, JV, Lassale, C, Pérez-Sanz, B, Vaquero-Luna, J, Bazán, MJA, Barceló-Iglesias, MC, Konieczna, J, Ríos, AG, Bernal-López, MR, Santos-Lozano, JM, Toledo, E, Becerra-Tomás, N, Portoles, O, Zomeño, MD, Abete, I, Moreno-Rodriguez, A, Lecea-Juarez, O, Nishi, SK, Muñoz-Martínez, J, Ordovás, JM, Daimiel, L. Use of different food classification systems to assess the association between ultra-processed food consumption and cardiometabolic health in an elderly population with metabolic syndrome (Predimed-plus cohort). Nutrients. 2021. 13.	Study Design; Intervention/Exposure
426	Masley, Steven. Why the Mediterranean Diet Is the Best Diet on the Planet. Holistic Primary Care. 2020. 21:8-9.	Publication Status

407	Macini C. Carro N. Buranza P. Nutterazzar A. de Canatia I. Cuardemana C. Maditarranaa	
427	Massini, G, Capra, N, Buganza, R, Nyffenegger, A, de Sanctis, L, Guardamagna, O. Mediterranean Dietary Treatment in Hyperlipidemic Children: Should It Be an Option?. Nutrients. 2022. 14.	Intervention/Exposure; Health Status
428	Mateo, KatrinaF. Evaluation of Intermittent Energy Restriction and Continuous Energy Restriction on Weight Loss and Blood Pressure Control in Overweight and Obese Patients With Hypertension. Journal of Clinical Outcomes Management. 2021. 28:256-259. doi:10.3389/fcvm.2021.750714	Intervention/Exposure; Study Duration
429	Matsumoto, S, Beeson, WL, Shavlik, DJ, Siapco, G, Jaceldo-Siegl, K, Fraser, G, Knutsen, SF. Association between vegetarian diets and cardiovascular risk factors in non-Hispanic white participants of the Adventist Health Study-2. Journal of Nutritional Science. 2019. doi:10.1017/jns.2019.1	Intervention/Exposure
430	Matthan, NR, Wylie-Rosett, J, Xue, X, Gao, Q, Groisman-Perelstein, AE, Diamantis, PM, Ginsberg, M, Mossavar-Rahmani, Y, Barger, K, Lichtenstein, AH. Effect of a family-based intervention on nutrient biomarkers, desaturase enzyme activities, and cardiometabolic risk factors in children with overweight and obesity. Current Developments in Nutrition. 2020. 4. doi:10.1093/CDN/NZZ138	Intervention/Exposure
431	Mazidi, M, Katsiki, N, Mikhailidis, DP, Banach, M. Effect of Dietary Insulinemia on All-Cause and Cause-Specific Mortality: Results From a Cohort Study. Journal of the American College of Nutrition. 2020. 39:407-413. doi:10.1080/07315724.2019.1646167	Intervention/Exposure
432	Mazidi, M, Katsiki, N, Mikhailidis, DP, Bartłomiejczyk, MA, Banach, M. Association of empirical dietary atherogenic indices with all-cause and cause-specific mortality in a multi-ethnic adult population of the United States. Nutrients. 2019. 11. doi:10.3390/nu11102323	Intervention/Exposure
433	Mazidi, M, Katsiki, N, Mikhailidis, DP, Sattar, N, Banach, M. Lower carbohydrate diets and all-cause and cause-specific mortality: A population-based cohort study and pooling of prospective studies. European Heart Journal. 2019. 40:2870-2879. doi:10.1093/eurheartj/ehz174	Intervention/Exposure
434	McArdle, CE, Bokhari, H, Rodell, CC, Buchanan, V, Preudhomme, LK, Isasi, CR, Graff, M, North, K, Gallo, LC, Pirzada, A, Daviglus, ML, Wojcik, G, Cai, J, Perreira, K, Fernandez-Rhodes, L. Findings from the Hispanic Community Health Study/Study of Latinos on the Importance of Sociocultural Environmental Interactors: Polygenic Risk Score-by-Immigration and Dietary Interactions. Frontiers in Genetics. 2021. 12.	Intervention/Exposure; Outcome
435	McElfish, PA, Felix, HC, Bursac, Z, Rowland, B, Yeary, KHK, Long, CR, Selig, JP, Kaholokula, JK, Riklon, S. A Cluster Randomized Controlled Trial Comparing Diabetes Prevention Program Interventions for Overweight/Obese Marshallese Adults. Inquiry : a journal of medical care organization, provision and financing. 2023. 60:469580231152051.	Intervention/Exposure
436	McEvoy CT, Moore SE, Erwin CM, Kontogianni M, Wallace SM, Appleton KM, Cupples ME, Hunter SJ, Kee F, McCance D, Patterson CC, Young IS, McKinley MC, Woodside JV. Trial to Encourage Adoption and Maintenance of a MEditerranean Diet (TEAM-MED): a randomised pilot trial of a peer support intervention for dietary behaviour change in adults from a Northern European population at high cardiovascular disease risk.	Intervention/Exposure; Comparator
437	McKenzie, BL, Harris, K, Peters, SAE, Webster, J, Woodward, M. The association of energy and macronutrient intake with all-cause mortality, cardiovascular disease and dementia: findings from 120 963 women and men in the UK Biobank. Br J Nutr. 2021. 1-10. doi:10.1017/S000711452100266X	Intervention/Exposure
438	Meadley, B, Wolkow, AP, Smith, K, Perraton, L, Bowles, KA, Bonham, MP. Cardiometabolic, dietary and physical health in graduate paramedics during the first 12-months of practice - a longitudinal study. Prehospital emergency care : official journal of the National Association of EMS Physicians and the National Association of State EMS Directors. 2021. 1-19. doi:10.1080/10903127.2021.1949081	Intervention/Exposure; Outcome; Comparator
439	Medenwald, D, Kluttig, A, Lacruz, ME, Schumann, J. Serum dietary fatty acids and coronary heart disease risk – A nested case-control-study within the CARLA cohort. Nutrition, Metabolism and Cardiovascular Diseases. 2019. 29:152-158. doi:10.1016/j.numecd.2018.10.006	Study Design; Intervention/Exposure
440	Mei S, Ding J, Wang K, Ni Z, Yu J. Mediterranean Diet Combined With a Low-Carbohydrate Dietary Pattern in the Treatment of Overweight Polycystic Ovary Syndrome Patients. 9.	Intervention/Exposure
441	Meireles, CL, Du, Y, Li, S, Dennis, B, Niazi, NS, Patel, DI, Gelfond, JA, Li, C, Ye, H, Montellano, R, etal, . Individualized and Technology-Assisted Ketogenic Diet on Metabolic and Kidney Health in Overweight or Obese Adults. Journal of the American Society of Nephrology : JASN. 2022. 33:291 doi:10.1681/asn.2021070948	Publication Status
442	Melero, V, Assaf-Balut, C, de la Torre, NG, Jiménez, I, Bordiú, E, Del Valle, L, Valerio, J, Familiar, C, Durán, A, Runkle, I, de Miguel, MP, Montañez, C, Barabash, A, Cuesta, M, Herraiz, MA, Izquierdo, N, Rubio, MA, Calle-Pascual, AL. Benefits of adhering to a mediterranean diet supplemented with extra virgin olive oil and pistachios in pregnancy on the health of offspring at 2 years of age. Results of the san carlos gestational diabetes mellitus prevention study. Journal of Clinical Medicine. 2020. 9. doi:10.3390/jcm9051454	Data Overlap
443	Menichini, D, Petrella, E, Dipace, V, Di Monte, A, Neri, I, Facchinetti, F. The impact of an early lifestyle intervention on pregnancy outcomes in a cohort of insulin-resistant overweight and obese women. Nutrients. 2020. 12. doi:10.3390/nu12051496	Intervention/Exposure; Comparator

444	Menotti A, Puddu PE, Catasta G. Determinants of longevity and age at death in a practically extinct cohort of middle-aged men followed-up for 61 years.	Outcome
445	Merrotsy A, McCarthy AL, Lacey S, Coppinger T. Identifying dietary patterns in Irish schoolchildren and their association with nutritional knowledge and markers of health before and after intervention. 126.	Study Design; Intervention/Exposure
446	Mi, B, Wen, X, Li, S, Liu, D, Lei, F, Liu, R, Shen, Y, Chen, Y, Zeng, L, Liu, X, Dang, S, Yan, H. Vegetable dietary pattern associated with low risk of preeclampsia possibly through reducing proteinuria. Pregnancy Hypertension. 2019. 16:131-138. doi:10.1016/j.preghy.2019.04.001	Study Design
447	Micek, A, Godos, J, Cernigliaro, A, Cincione, RI, Buscemi, S, Libra, M, Galvano, F, Grosso, G. Polyphenol-Rich and Alcoholic Beverages and Metabolic Status in Adults Living in Sicily, Southern Italy. Foods. 2021. 10. doi:10.3390/foods10020383	Study Design; Intervention/Exposure
448	Miller, Corrie, Benny, Paula, Boushey, Carol, Lee, Men-Jean. 818 Diet quality predicts hypertensive disorders of pregnancy in hawaii cohort. American Journal of Obstetrics & Gynecology. 2021. 224:S509-S509. doi:10.1016/j.ajog.2020.12.841	Study Design; Publication Status
449	Miller, ER, Alzahrani, HA, Bregaglio, DS, Christensen, JK, Palmer, SL, Alsharif, FH, Matroud, AS, Kanaani, KA, Sunbul, TJ, D'Almeida, J, Morrissey, S, Crockford, M, Rajanayagam, SN, Sarhan, AA, Azmi, WH, Miller, AR, Vrany, EA, Al Natour, S, Dalcin, AT, Ghamdi, MJ, Appel, LJ. Evaluation of a Video-Assisted Patient Education Program to Reduce Blood Pressure Delivered through the Electronic Medical Record: Results of a Quality Improvement Project. American Journal of Hypertension. 2021. 34:1328.	Intervention/Exposure; Study Duration
450	Mills J, O'Dowd N. Healthy Diet and Physical Activity for Cardiovascular Disease Prevention in Adults with Cardiovascular Risk Factors. 104.	Study Design; Publication Status
451	Minhas AS, Hong X, Wang G, Rhee DK, Liu T, Zhang M, Michos ED, Wang X, Mueller NT. Mediterranean-Style Diet and Risk of Preeclampsia by Race in the Boston Birth Cohort.	Study Design
452	Mirmiran P, Hosseini-Esfahani F, Esfandiar Z, Hosseinpour-Niazi S, Azizi F. Associations between dietary antioxidant intakes and cardiovascular disease. 12.	Intervention/Exposure
453	Mirmiran P, Houshialsadat Z, Bahadoran Z, Khalili-Moghadam S, Shahrzad MK, Azizi F. Dietary acid load and risk of cardiovascular disease: a prospective population-based study. 21.	Intervention/Exposure
454	Mirmiran, P, Farhadnejad, H, Teymoori, F, Parastouei, K, Azizi, F. The higher adherence to healthy lifestyle factors is associated with a decreased risk of metabolic syndrome in Iranian adults. Nutrition bulletin. 2022. 47:57.	Intervention/Exposure; Outcome
455	Mirmiran, P, Ziadlou, M, Karimi, S, Hosseini-Esfahani, F, Azizi, F. The association of dietary patterns and adherence to WHO healthy diet with metabolic syndrome in children and adolescents: Tehran lipid and glucose study. BMC Public Health. 2019. 19:1457. doi:10.1186/s12889-019-7779-9	Intervention/Exposure; Outcome; Comparator
456	Miyagawa N. Dietary Intake of Manganese in the Japanese Diet and its Association with Cardiometabolic and Cardiovascular Diseases.	Study Design; Publication Status
457	Mohammadi, F, Mirzaei, K, Rahimi, MH, Mollahosesini, M, Issah, A, Yekaninejad, MS, Maghbooli, Z. Alternative Healthy Eating Index may be associated with liver enzymes level among healthy adults. Progress in Nutrition. 2019. 21:165-169. doi:10.23751/pn.v21i2-S.7190	Study Design
458	Mohorko, N, Černelič-Bizjak, M, Poklar-Vatovec, T, Grom, G, Kenig, S, Petelin, A, Jenko-Pražnikar, Z. Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutrition Research. 2019. 62:64-77. doi:10.1016/j.nutres.2018.11.007	Study Design; Intervention/Exposure
459	Mohsenzadeh-Ledari, Farideh, Taghizadeh, Ziba, Motaghi, Zahra, Keramat, Afsaneh, Moosazadeh, Mahmood, Yazdani, Shahla, Najafi, Ali, Ghorbani, Mayam. Effect of caring intervention on preeclampsia in pregnant women with metabolic syndrome: A randomized controlled trial. Journal of Nursing & Midwifery Sciences. 2022. 9:8-15. doi:10.4103/jnms.jnms_49_21	Intervention/Exposure; Comparator
460	Mokhtari, Z, Sharafkhah, M, Poustchi, H, Sepanlou, SG, Khoshnia, M, Gharavi, A, Sohrabpour, AA, Sotoudeh, M, Dawsey, SM, Boffetta, P, Abnet, CC, Kamangar, F, Etemadi, A, Pourshams, A, FazeltabarMalekshah, A, Islami, F, Brennan, P, Malekzadeh, R, Hekmatdoost, A. Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet and risk of total and cause-specific mortality: results from the Golestan Cohort Study. Int J Epidemiol. 2019. 48:1824-1838. doi:10.1093/ije/dyz079	Country
461	Molina-Leyva, A, Cuenca-Barrales, C, Vega-Castillo, JJ, Ruiz-Carrascosa, JC, Ruiz-Villaverde, R. Adherence to Mediterranean diet in Spanish patients with psoriasis: Cardiovascular benefits?. Dermatologic Therapy. 2019. 32. doi:10.1111/dth.12810	Study Design
462	Moller, SP, Mejborn, H, Christensen, AI, Biltoft-Jensen, A, Thygesen, LC. Meat consumption, stratified by dietary quality, and risk of heart disease. Br J Nutr. 2021. 1-7. doi:10.1017/S0007114521000623	Intervention/Exposure
463	Momiyama Y, Kishimoto Y, Saita E, Aoyama M, Ohmori R, Kondo K. Association between the Japanese Diet and Coronary Artery Disease in Patients Undergoing Coronary Angiography. 15.	Study Design
464	Monge, A, Silva Canella, D, Lopez-Olmedo, N, Lajous, M, Cortes-Valencia, A, Stern, D. Ultraprocessed beverages and processed meats increase the incidence of hypertension in Mexican women. Br J Nutr. 2021. 126:600-611. doi:10.1017/S0007114520004432	Intervention/Exposure

465	Monserrat-Mesquida M, Quetglas-Llabrés M, Bouzas C, García S, Mateos D, Gómez C, Gámez JM, Poulsen HE, Tur JA, Sureda A. Effects of 2-Year Nutritional and Lifestyle Intervention on Oxidative and Inflammatory Statuses in Individuals of 55 Years of Age and over at High Cardiovascular Risk. 11.	Intervention/Exposure; Comparator
466	Morales E, García-Serna AM, Larqué E, Sánchez-Campillo M, Serrano-Munera A, Martinez-Graciá C, Santaella-Pascual M, Suárez-Martínez C, Vioque J, Noguera-Velasco JA, Avilés-Plaza FV, Martínez-Villanueva M, Ballesteros-Meseguer C, Galdo-Castiñeira L, García-Marcos L. Dietary Patterns in Pregnancy and Biomarkers of Oxidative Stress in Mothers and Offspring: The NELA Birth Cohort. 9.	Outcome
467	Morales Suárez-Varela M, Peraita-Costa I, Marín AP, Marcos Puig B, Llopis-Morales A, Soriano JM. Mediterranean Dietary Pattern and Cardiovascular Risk in Pregnant Women. 13.	Study Design; Outcome
468	Mora-Urda AI, Martín-Almena FJ, Montero López MDP. Relationship between the Dietary Inflammatory Index and Cardiovascular Health among Children. 19.	Study Design
469	Mouodi, S, Hosseini, SR, Ghadimi, R, Cumming, RG, Bijani, A, Mouodi, M, Pasha, YZ. Lifestyle interventions to promote healthy nutrition and physical activity in middle-age (40-60 years) adults: A randomized controlled trial in the North of Iran. Journal of Research in Health Sciences. 2019. 19. doi:10.15171/jrhs.2019.01	Intervention/Exposure
470	Mu, L, Yu, P, Xu, H, Gong, T, Chen, D, Tang, J, Zou, Y, Rao, H, Mei, Y, Mu, L. Efecto de la reducción de sodio basada en la dieta DASH sobre la presión arterial en pacientes hipertensos con diabetes de tipo 2. Effect of sodium reduction based on the DASH diet on blood pressure in hypertensive patients with type 2 diabetes. 2022.	Health Status
471	Mulcahy, MC, Tellez-Rojo, MM, Cantoral, A, Solano-González, M, Baylin, A, Bridges, D, Peterson, KE, Perng, W. Maternal Carbohydrate Intake During Pregnancy is Associated with Child Peripubertal Markers of Metabolic Health but not Adiposity. Public health nutrition. 2021. 1.	Intervention/Exposure; Outcome
472	Muntner, P, Jaeger, BC, Hardy, ST, Foti, K, Reynolds, K, Whelton, PK, Bowling, CB. Age-specific prevalence and factors associated with normal blood pressure among US adults. American journal of hypertension. 2021.	Study Design; Intervention/Exposure
473	Muralidharan J, Moreno-Indias I, Bulló M, Lopez JV, Corella D, Castañer O, Vidal J, Atzeni A, Fernandez-García JC, Torres-Collado L, Fernández-Carrión R, Fito M, Olbeyra R, Gomez-Perez AM, Galiè S, Bernal-López MR, Martinez-Gonzalez MA, Salas-Salvadó J, Tinahones FJ. Effect on gut microbiota of a 1-y lifestyle intervention with Mediterranean diet compared with energy-reduced Mediterranean diet and physical activity promotion: PREDIMED-Plus Study. 114.	Intervention/Exposure; Outcome
474	Murff HJ. In patients with CHD, a Mediterranean vs. low-fat diet reduced major CV events at 7 y.	Health Status
475	Muscogiuri, G, Barrea, L, Di Somma, C, Altieri, B, Vecchiarini, M, Orio, F, Spinosa, T, Colao, A, Savastano, S. Patient empowerment and the Mediterranean diet as a possible tool to tackle prediabetes associated with overweight or obesity: a pilot study. Hormones. 2019. 18:75-84. doi:10.1007/s42000-018-0090-9	Study Design
476	Myhrstad, MC, de Mello, VD, Dahlman, I, Kolehmainen, M, Paananen, J, Rundblad, A, Carlberg, C, Olstad, OK, Pihlajamäki, J, Holven, KB, Hermansen, K, Dragsted, LO, Gunnarsdottir, I, Cloetens, L, Storm, MU, . Healthy Nordic Diet Modulates the Expression of Genes Related to Mitochondrial Function and Immune Response in Peripheral Blood Mononuclear Cells from Subjects with the Metabolic Syndrome-A SYSDIET Sub-Study. Molecular nutrition & food research. 2019. e1801405. doi:10.1002/mnfr.201801405	Intervention/Exposure; Comparator
477	Na M, Wang Y, Zhang X, Sarpong C, Kris-Etherton PM, Gao M, Xing A, Wu S, Gao X. DASH-style Dietary Pattern and 24-hour Ambulatory Blood Pressure in Elderly Chinese with or without Hypertension.	Study Design
478	Na M, Wang Y, Zhang X, Sarpong C, Kris-Etherton PM, Gao M, Xing A, Wu S, Gao X. Dietary Approaches to Stop Hypertension (DASH)-Style Dietary Pattern and 24-Hour Ambulatory Blood Pressure in Elderly Chinese with or without Hypertension. 152.	Study Design
479	Naghizadeh, A, Zargaran, A, Karimi, M. The Heart-Healthy Avicennian Diet for Prevention of Heart Disease. Eur Heart J. 2020. 41:1465-1466. doi:10.1093/eurheartj/ehaa125	Study Design; Publication Status
480	Naghshi, S, Sadeghi, O. Current evidence on dietary intakes of fatty acids and mortality. The BMJ. 2021. 375.	Study Design
481	Nah, EH, Chu, J, Kim, S, Cho, S, Kwon, E. Efficacy of lifestyle interventions in the reversion to normoglycemia in Korean prediabetics: One-year results from a randomised controlled trial. Primary Care Diabetes. 2019. 13:212-220. doi:10.1016/j.pcd.2018.11.017	Intervention/Exposure
482	Nct, . Low Carbohydrate Diet Versus Low Fat Diet in Reversing the Metabolic Syndrome Using NCEP ATP III Criteria. https://clinicaltrials.gov/show/NCT04681924. 2020.	Publication Status
483	Nct, . Randomized Controlled Multi-center Study of the New Nordic Diet in Gestational Diabetes Mellitus. https://clinicaltrials.gov/show/NCT04169243. 2019.	Study Design; Publication Status
484	Nct, . The Effect of the DASH Diet Containing Meat on Muscle and Metabolic Health in Older Adults. https://clinicaltrials.gov/show/NCT04127240. 2019.	Publication Status

485	Nct, . The Impact of Consumption of Eggs in the Context of Plant-Based Diets on Endothelial Function, Diet Quality, and Cardio-Metabolic Risk Factors in Adults at Risk for Type 2 Diabetes. https://clinicaltrials.gov/show/NCT04316429. 2020.	Study Duration; Publication Status
486	NCT04252105, . Antioxidant-rich Diet and Oxidative Stress in Healthy Preschoolers. 2020.	Publication Status
487	Ngai, C, Ganguzza, L, Flink, L, Woolf, K, Guo, Y, Acosta, V, Gianos, E, Slater, J, Burdowski, J, Shah, B. Comparison of Dietary Patterns, Perceptions of Health, and Perceived Barriers to a Heart Healthy Diet Before and After Coronary Artery Angiography. American Journal of Cardiology. 2019. 123:865-873. doi:10.1016/j.amjcard.2018.11.056	Intervention/Exposure Health Status
488	Ngo Njembe, MoniqueT, Pachikian, Barbara, Lobysheva, Irina, Van Overstraeten, Nancy, Dejonghe, Louis, Verstraelen, Eleonore, Buchet, Marine, Rasse, Catherine, Gardin, Cécile, Mignolet, Eric, Balligand, Jean-Luc, Larondelle, Yvan, Chiva-Blanch, Gemma, Cofán, Montserrat. A Three-Month Consumption of Eggs Enriched with ω-3, ω-5 and ω-7 Polyunsaturated Fatty Acids Significantly Decreases the Waist Circumference of Subjects at Risk of Developing Metabolic Syndrome: A Double-Blind Randomized Controlled Trial. Nutrients. 2021. 13:663-663. doi:10.3390/nu13020663	Intervention/Exposure
489	Nielsen, Tine Bjerg, Würtz, Anne Mette Lund, Tjønneland, Anne, Overvad, Kim, Dahm, Christina Catherine. Substitution of unprocessed and processed red meat with poultry or fish and total and cause-specific mortality. British Journal of Nutrition. 2022. 127:563-569. doi:10.1017/S0007114521001252	Intervention/Exposure
490	Nirdnoy N, Sranacharoenpong K, Surawit A, Pinsawas B, Mongkolsucharitkul P, Pongkunakorn T, Manosan T, Ophakas S, Suta S, Pumeiam S, Mayurasakorn K. Validation of a Thai semiquantitative food frequency questionnaire (semi-FFQ) for people at risk of metabolic syndrome. 42.	Study Design
491	Nishi SK, Babio N, Gómez-Martínez C, Martínez-González MÁ, Ros E, Corella D, Castañer O, Martínez JA, Alonso-Gómez ÁM, Wärnberg J, Vioque J, Romaguera D, López-Miranda J, Estruch R, Tinahones FJ, Lapetra J, Serra-Majem JL, Bueno-Cavanillas A, Tur JA, Martín Sánchez V, Pintó X, Delgado-Rodríguez M, Matía-Martín P, Vidal J, Vázquez C, Daimiel L, Razquin C, Coltell O, Becerra-Tomás N, De La Torre Fornell R, Abete I, Sorto-Sanchez C, Barón-López FJ, Signes- Pastor AJ, Konieczna J, Garcia-Rios A, Casas R, Gomez-Perez AM, Santos-Lozano JM, García- Arellano A, Guillem-Saiz P, Ni J, Trinidad Soria-Florido M, Zulet MÁ, Vaquero-Luna J, Toledo E, Fitó M, Salas-Salvadó J. Mediterranean, DASH, and MIND Dietary Patterns and Cognitive Function: The 2-Year Longitudinal Changes in an Older Spanish Cohort. 13.	Outcome
492	Noakes, TD. Hiding unhealthy heart outcomes in a low-fat diet trial: the Women's Health Initiative Randomized Controlled Dietary Modification Trial finds that postmenopausal women with established coronary heart disease were at increased risk of an adverse outcome if they consumed a low-fat 'heart-healthy' diet. Open Heart. 2021. 8. doi:10.1136/openhrt-2021-001680	Study Design
493	Noerman, S, Kokla, M, Koistinen, VM, Lehtonen, M, Tuomainen, TP, Brunius, C, Virtanen, JK, Hanhineva, K. Associations of the serum metabolite profile with a healthy Nordic diet and risk of coronary artery disease. Clin Nutr. 2021. 40:3250-3262. doi:10.1016/j.clnu.2020.10.051	Intervention/Exposure; Comparator
494	Normayanti, , Suparyatmo, JB, Prayitno, A. The Effect of Nutrition Education on Body Mass Index, Waist Circumference, Mid-upper Arm Circumference and Blood Pressure in Obese Adolescents. Electronic Journal of General Medicine. 2020. 17:1-8. doi:10.29333/ejgm/7884	Intervention/Exposure
495	Nouri, F, Sadeghi, M, Mohammadifard, N, Roohafza, H, Feizi, A, Sarrafzadegan, N. Longitudinal association between an overall diet quality index and latent profiles of cardiovascular risk factors: results from a population based 13-year follow up cohort study. Nutr Metab (Lond). 2021. 18:28. doi:10.1186/s12986-021-00560-5	Outcome
496	Nurwanti, E, Bai, CH. Impact of web-based health promotion program and online nutrition education intervention for metabolic syndrome patients: effects on lipid profiles and inflammation. Annals of nutrition & metabolism. 2019. 75:325-326. doi:10.1159/000501751	Publication Status
497	Obomsawin, A, D'Amico, D, Fiocco, AJ. The association between Mediterranean diet adherence and allostatic load in older adults. Psychoneuroendocrinology. 2022. 143.	Study Design
498	O'Driscoll, T, Minty, R, Poirier, D, Poirier, J, Hopman, W, Willms, H, Goertzen, A, Madden, S, Kelly, L. New obesity treatment: Fasting, exercise and low carb diet - The NOT-FED study. Canadian journal of rural medicine : the official journal of the Society of Rural Physicians of Canada = Journal canadien de la medecine rurale : le journal officiel de la Societe de medecine rurale du Canada. 2021. 26:55-60. doi:10.4103/CJRM.CJRM_1_20	Study Design
499	Oh SW, Wood AC, Hwang SS, Allison M. Racial and Ethnic Differences in the Association of Low- Carbohydrate Diet With Mortality in the Multi-Ethnic Study of Atherosclerosis. 5.	Intervention/Exposure
500	O'Hearn M, Erndt-Marino J, Gerber S, Lauren BN, Economos C, Wong JB, Blumberg JB, Mozaffarian D. Validation of Food Compass with a healthy diet, cardiometabolic health, and mortality among U.S. adults, 1999-2018. 13.	Outcome
501	Ohman, EA, Kirchner, L, Winkvist, A, Bertz, F, Holven, KB, Ulven, SM, Brekke, HK. Effects of dietary and exercise treatments on HDL subclasses in lactating women with overweight and obesity: a secondary analysis of a randomised controlled trial. British Journal of Nutrition. 2022. 128:2105.	Intervention/Exposure

502	Ojeda-Granados C, Panduro A, Gonzalez-Aldaco K, Rivera-Iñiguez I, Campos-Medina L, Roman S.	Health Status;
	Adherence to a Fish-Rich Dietary Pattern Is Associated with Chronic Hepatitis C Patients Showing Low Viral Load: Implications for Nutritional Management. 13.	Outcome
503	Okuda M, Fujiwara A, Sasaki S. Adherence to the Japanese Food Guide: The Association between Three Scoring Systems and Cardiometabolic Risks in Japanese Adolescents. 14.	Study Design
504	Oliveira, Camila, Silveira, Erika Aparecida, Rosa, Lorena, Santos, Annelisa, Rodrigues, Ana Paula, Mendonça, Carolina, Silva, Lucas, Gentil, Paulo, Rebelo, Ana Cristina. Risk Factors Associated with Cardiac Autonomic Modulation in Obese Individuals. Journal of Obesity. 2020. 1-8. doi:10.1155/2020/7185249	Study Design
505	O'Neill RF, McGowan L, McEvoy CT, Wallace SM, Moore SE, McKinley MC, Kee F, Cupples ME, Young IS, Woodside JV. The feasibility of a peer support intervention to encourage adoption and maintenance of a Mediterranean diet in established community groups at increased CVD risk: the TEAM-MED EXTEND study: a pilot cluster randomised controlled trial.	Intervention/Exposure; Outcome; Comparator
506	Ooi, DSQ, Toh, JY, Ng, LYB, Peng, Z, Yang, S, Rashid, NSBSA, Sng, AA, Chan, YH, Chong, MF-F, Lee, YS. Dietary Intakes and Eating Behavior between Metabolically Healthy and Unhealthy Obesity Phenotypes in Asian Children and Adolescents. Nutrients. 2022. 14.	Study Design
507	Ooi, EMM, Lichtenstein, AH, Millar, JS, Diffenderfer, MR, Lamon-Fava, S, Rasmussen, H, Welty, FK, Barrett, PHR, Schaefer, EJ. Effects of therapeutic lifestyle change diets high and low in dietary fish-derived FAs on lipoprotein metabolism in middle-aged and elderly subjects. Journal of Lipid Research. 2012. 53:1958.	Intervention/Exposure
508	Oppezzo M, Knox M, Skan J, Chieng A, Crouch M, Aikens RC, Benowitz NL, Schnellbaecher M, Prochaska JJ. Traditional Heart-Healthy Diet and Medication Adherence in the Norton Sound Region: An 18-Month Telehealth Intervention. 19.	Intervention/Exposure; Comparator
509	Osorio-Conles, Ó, Olbeyra, R, Moizé, V, Ibarzabal, A, Giró, O, Viaplana, J, Jiménez, A, Vidal, J, de Hollanda, A. Positive Effects of a Mediterranean Diet Supplemented with Almonds on Female Adipose Tissue Biology in Severe Obesity. Nutrients. 2022. 14.	Intervention/Exposure; Outcome
510	Otsuka, R, Tange, C, Nishita, Y, Kato, Y, Tomida, M, Imai, T, Ando, F, Shimokata, H. Dietary Diversity and All-Cause and Cause-Specific Mortality in Japanese Community-Dwelling Older Adults. Nutrients. 2020. 12. doi:10.3390/nu12041052	Intervention/Exposure
511	Ozner, Michael. THE MEDITERRANEAN DIET: A Prescription for Healthy Aging and Longevity. Life Extension. 2021. 27:66-74.	Study Design; Publication Status
512	Pagliai, G, Russo, E, Niccolai, E, Dinu, M, Di Pilato, V, Magrini, A, Bartolucci, G, Baldi, S, Menicatti, M, Giusti, B, etal, . Influence of a 3-months low-calorie Mediterranean diet vs. Vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study. Proceedings of the Nutrition Society. 2020. 79. doi:10.1017/S0029665120001251	Publication Status
513	Pagliai, G, Russo, E, Niccolai, E, Dinu, M, Di Pilato, V, Magrini, A, Bartolucci, G, Baldi, S, Menicatti, M, Giusti, B, Marcucci, R, Rossolini, GM, Casini, A, Sofi, F, Amedei, A. Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study. Eur J Nutr. 2020. 59:2011-2024. doi:10.1007/s00394-019-02050-0	Intervention/Exposure; Outcome
514	Pahkala, K, Laitinen, TT, Niinikoski, H, Kartiosuo, N, Rovio, SP, Lagstrom, H, Loo, BM, Salo, P, Jokinen, E, Magnussen, CG, Juonala, M, Simell, O, Jula, A, Ronnemaa, T, Viikari, J, Raitakari, OT. Effects of 20-year infancy-onset dietary counselling on cardiometabolic risk factors in the Special Turku Coronary Risk Factor Intervention Project (STRIP): 6-year post-intervention follow-up. Lancet Child Adolesc Health. 2020. 4:359-369. doi:10.1016/S2352-4642(20)30059-6	Intervention/Exposure
515	Paik, JK, Park, M, Shin, JE, Jang, SY, Shin, JY. Dietary Protein to Carbohydrate Ratio and Incidence of Metabolic Syndrome in Korean Adults Based on a Long-Term Prospective Community-Based Cohort. Nutrients. 2020. 12. doi:10.3390/nu12113274	Intervention/Exposure
516	Pan F, Wang Z, Wang H, Zhang J, Su C, Jia X, Du W, Jiang H, Li W, Wang L, Hao L, Zhang B, Ding G. Association between Ultra-Processed Food Consumption and Metabolic Syndrome among Adults in China-Results from the China Health and Nutrition Survey. 15.	Intervention/Exposure; Country
517	Panagiotakos, Demosthenes, Kouvari, Matina, Chrysohoou, Christina, Georgousopoulou, Ekavi, Tousoulis, Dimitrios, Pitsavos, Christos. THE ASSOCIATION BETWEEN HEALTHFUL AND UNHEALTHFUL PLANT BASED DIETARY PATTERNS AND 10-YEAR CARDIOVASCULAR DISEASE INCIDENCE IN APPARENTLY HEALTHY MEN AND WOMEN: HIGHLIGHTS FROM THE ATTICA PROSPECTIVE (2002-2012) STUDY. Journal of the American College of Cardiology (JACC). 2020. 75:9-9. doi:10.1016/S0735-1097(20)30555-6	Publication Status
518	Paoli, Á, Mancin, L, Giacona, MC, Bianco, A, Caprio, M. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. J Transl Med. 2020. 18:104. doi:10.1186/s12967-020-02277-0	Study Design; Health Status
519	Papandreou, C, Becerra-Tomás, N, Bulló, M, Martínez-González, Á M, Corella, D, Estruch, R, Ros, E, Arós, F, Schroder, H, Fitó, M, Serra-Majem, L, Lapetra, J, Fiol, M, Ruiz-Canela, M, Sorli, JV, Salas-Salvadó, J. Legume consumption and risk of all-cause, cardiovascular, and cancer mortality in the PREDIMED study. Clinical Nutrition. 2019. 38:348-356. doi:10.1016/j.clnu.2017.12.019	Intervention/Exposure

520	Park SY, Kang M, Shvetsov YB, Setiawan VW, Boushey CJ, Haiman CA, Wilkens LR, Le Marchand	Health Status;
	L. Diet quality and all-cause and cancer-specific mortality in cancer survivors and non-cancer	Outcome
	individuals: the Multiethnic Cohort Study.	
521	Park, S, Kang, S. A Western-style diet interacts with genetic variants of the LDL receptor to hyper- LDL cholesterolemia in Korean adults. Public Health Nutr. 2021. 24:2964-2974.	Comparator
	doi:10.1017/S1368980020001305	
522	Park, S, Zhang, T. A positive association of overactivated immunity with metabolic syndrome risk	Intervention/Exposure;
	and mitigation of its association by a plant-based diet and physical activity in a large cohort study.	Outcome; Comparator
	Nutrients. 2021. 13. doi:10.3390/nu13072308	· · · · · · · · · · · · · · · · · · ·
523	Park, YMM, Choi, MK, Lee, SS, Shivappa, N, Han, K, Steck, SE, Hébert, JR, Merchant, AT, Sandler, DP. Dietary inflammatory potential and risk of mortality in metabolically healthy and	Intervention/Exposure
	unhealthy phenotypes among overweight and obese adults. Clinical Nutrition. 2019. 38:682-688.	
	doi:10.1016/j.clnu.2018.04.002	
524	Parlapani, E, Agakidis, C, Karagiozoglou-Lampoudi, T, Sarafidis, K, Agakidou, E, Athanasiadis, A,	Study Design; Health
	Diamanti, E. The Mediterranean diet adherence by pregnant women delivering prematurely:	Status
	association with size at birth and complications of prematurity. Journal of Maternal-Fetal and Neonatal Medicine. 2019. 32:1084-1091. doi:10.1080/14767058.2017.1399120	
525	Pasta, A, Formisano, E, Cremonini, AL, Maganza, E, Parodi, E, Piras, S, Pisciotta, L. Diet and	Study Design;
	Nutraceutical Supplementation in Dyslipidemic Patients: First Results of an Italian Single Center	Intervention/Exposure;
	Real-World Retrospective Analysis. Nutrients. 2020. 12. doi:10.3390/nu12072056	Comparator
526	Pauley, M, Mays, C, Bailes, JR, Schwartzman, ML, Castle, M, McCoy, M, Patick, C, Preston, D,	Study Design;
	Nudelman, MJR, Denning, KL, Bellner, L, Werthammer, J. Carbohydrate-Restricted Diet: A Successful Strategy for Short-Term Management in Youth with Severe Obesity-An Observational	Intervention/Exposure
	Study. Metabolic Syndrome and Related Disorders. 2021. 19:281-287. doi:10.1089/met.2020.0078	
527	Pérez-Rodrigo C, Hervás Bárbara G, Gianzo Citores M, Aranceta-Bartrina J. Prevalence of obesity	Study Design
	and associated cardiovascular risk factors in the Spanish population: the ENPE study. 75.	-
528	Perry CA, Van Guilder GP, Butterick TA. Decreased myostatin in response to a controlled DASH	Outcome
	diet is associated with improved body composition and cardiometabolic biomarkers in older adults: results from a controlled-feeding diet intervention study. 8.	
529	Perry, CA, Van Guilder, GP, Hossain, M, Kauffman, A. Cardiometabolic Changes in Response to a	Comparator
	Calorie-Restricted DASH Diet in Obese Older Adults. Front Nutr. 2021. 8:647847.	-
	doi:10.3389/fnut.2021.647847	
530	Perry, CA, Van Guilder, GP, Kauffman, A, Hossain, M. A Calorie-Restricted DASH Diet Reduces Body Fat and Maintains Muscle Strength in Obese Older Adults. Nutrients. 2019. 12.	Study Design
	doi:10.3390/nu12010102	
531	Pestoni, G, Karavasiloglou, N, Braun, J, Krieger, JP, Sych, JM, Bopp, M, Faeh, D, Gruebner, O,	Study Design
	Rohrmann, S. Does diet map with mortality? Ecological association of dietary patterns with chronic	
	disease mortality and its spatial dependence in Switzerland. Br J Nutr. 2021. 1-13.	
532	doi:10.1017/S0007114521001525 Petermann-Rocha, Fanny, Gray, StuartR, Pell, Jill, Celis-Morales, Carlos. Diet-quality and its	Publication Status
552	association with cardiovascular diseases and cancer incidence and all-cause mortality: a	T ublication Status
	prospective cohort study from UK Biobank. Proceedings of the Nutrition Society. 2020. 79:1-1.	
	doi:10.1017/S0029665120000208	
533	Petersen JM, Naimi AI, Kirkpatrick SI, Bodnar LM. Equal Weighting of the Healthy Eating Index- 2010 Components May not be Appropriate for Pregnancy.	Outcome
534	Petersen KS, Murphy J, Whitbread J, Clifton PM, Keogh JB. The Effect of a Peanut-Enriched	Intervention/Exposure
004	Weight Loss Diet Compared to a Low-Fat Weight Loss Diet on Body Weight, Blood Pressure, and	
	Glycemic Control: A Randomized Controlled Trial. 14.	
535	Phillips, NE, Mareschal, J, Schwab, N, Manoogian, ENC, Borloz, S, Ostinelli, G, Gauthier-Jaques,	Intervention/Exposure;
	A, Umwali, S, Gonzalez Rodriguez, E, Aeberli, D, Hans, D, Panda, S, Rodondi, N, Naef, F, Collet, TH. The Effects of Time-Restricted Eating versus Standard Dietary Advice on Weight, Metabolic	Study Duration
	Health and the Consumption of Processed Food: A Pragmatic Randomised Controlled Trial in	
	Community-Based Adults. Nutrients. 2021. 13. doi:10.3390/nu13031042	
536	Piccirillo F, Miano N, Goffredo C, Nusca A, Mangiacapra F, Khazrai YM, De Gara L, Ussia GP,	Health Status
	Grigioni F. Impact of Mediterranean diet on metabolic and inflammatory status of patients with	
527	polyvascular atherosclerotic disease.	Outcomo
537	Pintó, X, Fanlo-Maresma, M, Corbella, E, et al. A Mediterranean Diet Rich in Extra-Virgin Olive Oil Is Associated with a Reduced Prevalence of Nonalcoholic Fatty Liver Disease in Older Individuals at	Outcome
	High Cardiovascular Risk. Journal of Nutrition. 2019. 149:1920.	
538	Piovesan CH, Gustavo A, Macagnan FE, Saboya PP, Oliveira MDS, Bodanese LC, Ludwig MWB,	Intervention/Exposure
	Closs VE, Feoli AMP. The Effect of Different Interventions for Lifestyle Modifications on the Number	
	of Diagnostic Criteria and Clinical Aspects of Metabolic Syndrome. 19.	

539	Pisanu, S, Palmas, V, Madau, V, Casula, E, Deledda, A, Cusano, R, Uva, P, Vascellari, S, Boi, F,	Study Design;
	Loviselli, A, Manzin, A, Velluzzi, F. Impact of a moderately hypocaloric mediterranean diet on the gut microbiota composition of italian obese patients. Nutrients. 2020. 12:1-19. doi:10.3390/nu12092707	Comparator
540	Porter Starr, KN, Connelly, MA, Orenduff, MC, McDonald, SR, Sloane, R, Huffman, KM, Kraus, WE, Bales, CW. Impact on cardiometabolic risk of a weight loss intervention with higher protein from lean red meat: Combined results of 2 randomized controlled trials in obese middle-aged and older adults.	Intervention/Exposure
541	Journal of Clinical Lipidology. 2019. 13:920-931. doi:10.1016/j.jacl.2019.09.012 Prentice, RL, Aragaki, AK, Van Horn, L, Thomson, CA, Tinker, LF, Manson, JE, Mossavar-Rahmani, Y, Huang, Y, Zheng, C, Beresford, SAA, Wallace, R, Anderson, GL, Lampe, JW, Neuhouser, ML. Mortality Associated with Healthy Eating Index Components and an Empirical-scores Healthy Eating Index in a Cabert of Postmanapaula Warman. The Journal of putrition. 2022	Intervention/Exposure; Outcome
542	Index in a Cohort of Postmenopausal Women. The Journal of nutrition. 2022. Primo, D, Izaola, O, de Luis, D. Effects of a high protein/low carbohydrate low-calorie diet versus a standard low-calorie diet on anthropometric parameters and cardiovascular risk factors, role of polymorphism rs3123554 in the cannabinoid receptor gene type 2 (CB2R). Endocrinologia, Diabetes y Nutricion. 2020. 67:446-453. doi:10.1016/j.endinu.2019.09.010	Intervention/Exposure
543	Priya Margaret, A, Ramesh, S, Sundari, S. Prevalence of hypertension and its correlation with diet in school going adolescent girls in an urban setting. Indian Journal of Public Health Research and Development. 2019. 10:1504-1506. doi:10.5958/0976-5506.2019.03748.3	Study Design; Country
544	Psota, TL, Tindall, AM, Lohse, B, Miller, PE, Petersen, KS, Kris-Etherton, PM. The Weight Optimization Revamping Lifestyle using the Dietary Guidelines (WORLD) Study: Sustained Weight Loss Over 12 Months. Obesity. 2020. 28:1235-1244. doi:10.1002/oby.22824	Intervention/Exposure
545	Purnamasari, SD, Hsu, C-Y, Chen, Y-T, Kurniawan, AL, Lee, H-A, Chao, JC-J. Combined Low Plant and High Animal Dietary Pattern Is Associated with a Lower Risk of Anemia among Dyslipidemic Adult Women in Taiwan: A Retrospective Study from 2001 to 2015. International Journal of Environmental Research and Public Health. 2022. 19.	Study Design
546	Qin, C, Lv, J, Yu, C, Guo, Y, Bian, Z, Gao, M, Du, H, Yang, L, Chen, Y, Shen, L, Zhou, S, Chen, J, Chen, Z, Li, L. Dietary patterns and cardiometabolic diseases in 0.5 million Chinese adults: a 10-year cohort study. Nutrition Journal. 2021. 20.	Country
547	Quetglas-Llabrés MM, Monserrat-Mesquida M, Bouzas C, Gómez C, Mateos D, Ripoll-Vera T, Tur JA, Sureda A. Inflammatory and Oxidative Stress Markers Related to Adherence to the Mediterranean Diet in Patients with Metabolic Syndrome. 11.	Study Design
548	Rabbani B, Chiti H, Sharifi F, Mazloomzadeh S. Effect of lifestyle modification for two years on obesity and metabolic syndrome components in elementary students: A community- based trial. 13.	Intervention/Exposure; Comparator
549	Rahman VJ, Horberg MA, Hu H, Vupputuri S. Implementation of a Plant-Based, Nutrition Program in a Large Integrated Health Care System: Results of a Pilot Program. 12.	Study Design
550	Rashidmayvan, M, Sharifan, P, Darroudi, S, Saffar Soflaei, S, Salaribaghoonabad, R, Safari, N, Yousefi, M, Honari, M, Ghazizadeh, H, Ferns, G, Esmaily, H, Ghayour-Mobarhan, M. Association between dietary patterns and body composition in normal-weight subjects with metabolic syndrome. Journal of Diabetes and Metabolic Disorders. 2022.	Study Design
551	Rassy N, Van Straaten A, Carette C, Hamer M, Rives-Lange C, Czernichow S. Association of Healthy Lifestyle Factors and Obesity-Related Diseases in Adults in the UK. 6.	Intervention/Exposure; Outcome
552	Raza, Q, Nicolaou, M, Cay, F, Seidell, J. Association of dietary intake and dietary habits with risk of cardiovascular disease among immigrant Pakistanis living in the Netherlands. Journal of the Pakistan Medical Association. 2021. 71:219-227. doi:10.47391/JPMA.219	Study Design
553	Razquin C, Ruiz-Canela M, Wernitz A, Toledo E, Corella D, Alonso-Gómez Á, Fitó M, Gómez- Gracia E, Estruch R, Fiol M, Lapetra J, Serra-Majem L, Ros E, Arós F, Salas-Salvadó J, Schulze MB, Martinez-Gonzalez MA. Effects of Supplemented Mediterranean Diets on Plasma-Phospholipid Fatty Acid Profiles and Risk of Cardiovascular Disease after 1 Year of Intervention in the PREDIMED Trial.	Intervention/Exposure
554	Razquin, C, Ruiz-Canela, M, Toledo, E, Hernandez-Alonso, P, Clish, CB, Guasch-Ferre, M, Li, J, Wittenbecher, C, Dennis, C, Alonso-Gomez, A, etal, . Metabolomics of the tryptophan-kynurenine degradation pathway and risk of atrial fibrillation and heart failure: potential modification effect of Mediterranean diet. American journal of clinical nutrition. 2021. doi:10.1093/ajcn/nqab238	Study Design; Intervention/Exposure
555	RBR-5hvgtky, . Effectiveness of nutritional intervention to management Systemic Arterial Hypertension in Primary Health Care. 2021.	Publication Status
556	Recio-Rodríguez, JI, Rodriguez-Sanchez, E, Martin-Cantera, C, Martinez-Vizcaino, V, Arietaleanizbeaskoa, MS, Gonzalez-Viejo, N, Menendez-Suarez, M, Gómez-Marcos, MA, Garcia- Ortiz, L. Combined use of a healthy lifestyle smartphone application and usual primary care counseling to improve arterial stiffness, blood pressure and wave reflections: a Randomized Controlled Trial (EVIDENT II Study). Hypertension Research. 2019. 42:852-862. doi:10.1038/s41440-018-0182-6	Intervention/Exposure
557	Reddy, NehaK, Kaushal, Vaidehi, Kanaya, AlkaM, Kandula, NamrathaR, Gujral, UnjaliP, Shah, NilayS. Cardiovascular risk factor profiles in North and South Indian and Pakistani Americans: The MASALA Study. 2022. 244:14-18. doi:10.1016/j.ahj.2021.10.115	Study Design

558	Reyes-López, MA, González-Leyva, CP, Rodríguez-Cano, AM, Rodríguez-Hernández, C, Colin-	Confounders
550	Ramírez, E, Estrada-Gutierrez, G, Muñoz-Manrique, CG, Perichart-Perera, O. Diet quality is	Comounders
	associated with a high newborn size and reduction in the risk of low birth weight and small for	
	gestational age in a group of mexican pregnant women: An observational study. Nutrients. 2021. 13.	
559	Ribas SA, Paravidino VB, Brandão JM, Santana da Silva LC. The Cardiovascular Health Integrated	Study Design;
	Lifestyle Diet (CHILD) Lowers LDL-Cholesterol Levels in Brazilian Dyslipidemic Pediatric Patients.	Intervention/Exposure
	41.	
560	Ribo-Coll, M, Casas, R, Roth, I, Estruch, R. The relationship between consumption of fermented	Outcome; Publication
	alcoholic beverages, eating patterns ans anthropometric parameters in elderly patients at high	Status
	cardiovascular risk. Proceedings of the Nutrition Society. 2020. 79.	
	doi:10.1017/S0029665120003729	
561	Richardson LA, Basu A, Chien LC, Alman AC, Snell-Bergeon JK. Longitudinal associations of	Outcome
	healthy dietary pattern scores with coronary artery calcification and pericardial adiposity in US adults	
	with and without type 1 diabetes.	
562	Rich-Edwards, JW, Stuart, JJ, Skurnik, G, Roche, AT, Tsigas, E, Fitzmaurice, GM, Wilkins-Haug,	Intervention/Exposure
	LE, Levkoff, SE, Seely, EW. Randomized Trial to Reduce Cardiovascular Risk in Women with	
	Recent Preeclampsia. J Womens Health (Larchmt). 2019. 28:1493-1504.	
	doi:10.1089/jwh.2018.7523	
563	Riemer, M, Schulze, S, Wagner, L, Richter, M, Ayerle, G, Simm, A, Seeger, S, Schwesig, R,	Intervention/Exposure
	Tchirikov, M, Seliger, G. Cardiovascular Risk Reduction in Women following Hypertensive Disorders	
	of Pregnancy - A Prospective, Randomised, Controlled Interventional Study. Geburtshilfe und	
	Frauenheilkunde. 2021. 81:966.	
564	Rinott E, Meir AY, Tsaban G, Zelicha H, Kaplan A, Knights D, Tuohy K, Scholz MU, Koren O,	Intervention/Exposure
	Stampfer MJ, Wang DD, Shai I, Youngster I. The effects of the Green-Mediterranean diet on	
	cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. 14.	
565	Riseberg, E, Lopez-Cepero, A, Mangano, KM, Tucker, KL, Mattei, J. Specific Dietary Protein	Intervention/Exposure
	Sources Are Associated with Cardiometabolic Risk Factors in the Boston Puerto Rican Health	
500	Study. Journal of the Academy of Nutrition and Dietetics. 2022. 122:298.	latence time / Errore and
566	Ristić-Medić, D, Petrović, S, Takić, M, Vučić, V, Arsić, A, Rađen, S, Glibetić, M. EFFICACY OF A	Intervention/Exposure
	LIPID-LOWERING DIET ON KEY FATTY ACID RATIOS AND OMEGA-3 INDEX IN	
	HYPERLIPIDEMIC SUBJECTS. UČINKOVITOST DIJETE ZA SNIŽAVANJE LIPIDA NA KLJUČNE	
	OMJERE MASNIH KISELINA I OMEGA-3 INDEKS KOD OSOBA S HIPERLIPIDEMIJAMA. 2022. 61:220.	
567	Rock, CL, Zunshine, E, Nguyen, HT, Perez, AO, Zoumas, C, Pakiz, B, White, MM. Effects of	Intervention/Exposure;
	pistachio consumption in a behavioral weight loss intervention on weight change, cardiometabolic	Comparator
	factors, and dietary intake. Nutrients. 2020. 12:1-14. doi:10.3390/nu12072155	••••••
568	Rodriguez, MA, Friedberg, JP, DiGiovanni, A, Wang, B, Wylie-Rosett, J, Hyoung, S, Natarajan, S. A	Intervention/Exposure
	Tailored Behavioral Intervention to Promote Adherence to the DASH Diet. American journal of	
	health behavior. 2019. 43:659-670. doi:10.5993/AJHB.43.4.1	
569	Rodríguez-Martín, C, Garcia-Ortiz, L, Rodriguez-Sanchez, E, Martin-Cantera, C, Soriano-Cano, A,	Study Design
	Arietaleanizbeaskoa, MS, Magdalena-Belio, JF, Menendez-Suarez, M, Maderuelo-Fernandez, JA,	, ,
	Lugones-Sanchez, C, Gómez-Marcos, MA, Recio-Rodríguez, JI. The relationship of the atlantic diet	
	with cardiovascular risk factors and markers of arterial stiffness in adults without cardiovascular	
	disease. Nutrients. 2019. 11. doi:10.3390/nu11040742	
570	Röhling, M, Kempf, K, Banzer, W, Berg, A, Braumann, KM, Tan, S, Halle, M, McCarthy, D, Pinget,	Intervention/Exposure
	M, Predel, HG, Scholze, J, Toplak, H, Martin, S. Prediabetes conversion to normoglycemia is	
	superior adding a low-carbohydrate and energy deficit formula diet to lifestyle intervention— a 12-	
	month subanalysis of the acoorh trial. Nutrients. 2020. 12:1-13. doi:10.3390/nu12072022	
571	Romanidou, M, Tripsianis, G, Hershey, MS, Sotos-Prieto, M, Christophi, C, Moffatt, S,	Study Design
	Constantinidis, TC, Kales, SN. Association of the Modified Mediterranean Diet Score (mMDS) with	
	Anthropometric and Biochemical Indices in US Career Firefighters. Nutrients. 2020. 12.	
	doi:10.3390/nu12123693	
572	Ronca A, Pellegrini N, Pagliai G, Dinu M, Manfredini M, Incerti M, Favari E, Sofi F. Effects of a	Intervention/Exposure
	dietary intervention with Mediterranean vs lacto-ovo vegetarian diets on HDL function: Results from	
	the CARDIVEG study.	
573	Roncero-Ramos, I, Alcala-Diaz, JF, Rangel-Zuniga, OA, Gomez-Delgado, F, Jimenez-Lucena, R,	Health Status
	Garcia-Rios, A, Vals-Delgado, C, Romero-Baldonado, C, Luque, RM, Ordovas, JM, Perez-Martinez,	
	P, Camargo, A, Lopez-Miranda, J. Prediabetes diagnosis criteria, type 2 diabetes risk and dietary	
	modulation: The CORDIOPREV study. Clin Nutr. 2020. 39:492-500. doi:10.1016/j.clnu.2019.02.027	
574	Rosenberg K. Mediterranean Diet Superior to Low-Fat Diet for CVD Prevention. 122.	Publication Status

Scazzina, F. Body weight of individuals with obesity decreases after a 6-month high pasta or low pasta Mediterranean diet weight-loss intervention. Nutrition, Metabolism and Cardiovascular Diseases. 2020. 30:984-995. doi:10.1016/j.numecd.2020.02.013	
pasta Mediterranean diet weight-loss intervention. Nutrition, Metabolism and Cardiovascular Diseases. 2020. 30:984-995. doi:10.1016/j.numecd.2020.02.013	vention/Exposure;
Diseases. 2020. 30:984-995. doi:10.1016/j.numecd.2020.02.013	parator
F76 Destroard Hanson AL Law CL Hallvier L Olean A Taft LL An undeted validation of the Distance Stud	v Design
	y Design
Quality Score: associations with risk factors for cardiometabolic diseases in a Danish population.	
	ome
Rastrollo, M. Lifestyle-Related Factors and Total Mortality in a Mediterranean Prospective Cohort.	
American Journal of Preventive Medicine. 2020. 59:e59-e67. doi:10.1016/j.amepre.2020.01.032	41- 01-1
	th Status;
	ome
Paleolithic food groups. Clinical Nutrition Experimental. 2019. 25:29-35.	
 doi:10.1016/j.yclnex.2019.03.002 579 Saeedi, P, Haszard, J, Stoner, L, Skeaff, S, Black, KE, Davison, B, Harrex, H, Meredith-Jones, K, Stuc 	y Design
Quigg, R, Wong, JE, Skidmore, PML. Relationships between Dietary Patterns and Indices of Arterial	y Design
Stiffness and Central Arterial Wave Reflection in 9-11-Year-Old Children. Children (Basel). 2020. 7.	
doi:10.3390/children7060066	
	y Design
cardiovascular disease and cancer mortality by achieving healthy dietary goals for the swedish	y Design
population: A macro-simulation modelling study. International Journal of Environmental Research	
and Public Health. 2019. 16. doi:10.3390/ijerph16050890	
	y Design
with Nordic nutrition recommendations on cardiovascular disease and cancer mortality in the Nordic	<i>y</i> =9.1
countries. Nutrients. 2019. 11. doi:10.3390/nu11061434	
	vention/Exposure;
	parator
on metabolic syndrome in obese young men. Journal of Exercise Science & Fitness. 2020. 18:101-	•
108. doi:10.1016/j.jesf.2020.03.002	
583 Sajjanar, DS, Nimbal, P. Association between dietary inflammatory index and metabolic syndrome: Stud	y Design
A hospital-based study. Journal of Krishna Institute of Medical Sciences University. 2019. 8:20-29.	· · ·
	ication Status
PREDIMED studies. Obesity facts. 2021. 14:2-3. doi:10.1159/000515911	
	parator
Wärnberg, J, Romaguera, D, Estruch, R, Vidal, J, Alfredo Martínez, J, Arós, F, Vázquez, C, Ros, E,	
Vioque, J, López-Miranda, J, Bueno-Cavanillas, A, Tur, JA, Tinahones, FJ, Martín, V, Lapetra, J,	
Pintó, X, Daimiel, L, Delgado-Rodríguez, M, Matía, P, Gómez-Gracia, E, Díez-Espino, J, Babio, N,	
Castañer, O, Sorlí, JV, Fiol, M, Zulet, Á M, Bulló, M, Goday, A, Martínez-González, Á M. Effect of a	
lifestyle intervention program with energy-restricted Mediterranean diet and exercise on weight loss	
and cardiovascular risk factors: One-year results of the PREDIMED-Plus trial. Diabetes Care. 2019.	
42:777-788. doi:10.2337/dc18-0836	v Design
586 Salvador, AM, García-Maldonado, E, Gallego-Narbón, A, Zapatera, B, Vaquero, MP. Fatty acid profile and cardiometabolic markers in relation with diet type and omega-3 supplementation in	y Design
Spanish vegetarians. Nutrients. 2019. 11. doi:10.3390/nu11071659	
	y Design
Implementation-Effectiveness Study of a Community Health Worker-Delivered Intervention to	y Design
Reduce Cardiovascular Disease Risk in a Rural, Underserved Non-Hispanic Black Population: The	
CHANGE Study.	
	y Design;
	vention/Exposure
to eating habits and physical activity. 68.	
	vention/Exposure;
	parator
with an energy-restricted Mediterranean diet and physical activity enhances HDL function: a	
substudy of the PREDIMED-Plus randomized controlled trial.	
	vention/Exposure
Macronutrient quality and all-cause mortality in the sun cohort. Nutrients. 2021. 13:1-17.	
Macronutrient quality and all-cause mortality in the sun cohort. Nutrients. 2021. 13:1-17. doi:10.3390/nu13030972	
 Macronutrient quality and all-cause mortality in the sun cohort. Nutrients. 2021. 13:1-17. doi:10.3390/nu13030972 591 Santos, Aseac, Rodrigues, Apds, Rosa, LPS, Noll, M, Silveira, EA. Traditional Brazilian Diet and Inter 	vention/Exposure;
 Macronutrient quality and all-cause mortality in the sun cohort. Nutrients. 2021. 13:1-17. doi:10.3390/nu13030972 591 Santos, Aseac, Rodrigues, Apds, Rosa, LPS, Noll, M, Silveira, EA. Traditional Brazilian Diet and Olive Oil Reduce Cardiometabolic Risk Factors in Severely Obese Individuals: A Randomized Trial. 	vention/Exposure; parator
 Macronutrient quality and all-cause mortality in the sun cohort. Nutrients. 2021. 13:1-17. doi:10.3390/nu13030972 591 Santos, Aseac, Rodrigues, Apds, Rosa, LPS, Noll, M, Silveira, EA. Traditional Brazilian Diet and Olive Oil Reduce Cardiometabolic Risk Factors in Severely Obese Individuals: A Randomized Trial. Inter Nutrients. 2020. 12. doi:10.3390/nu12051413 	parator
 Macronutrient quality and all-cause mortality in the sun cohort. Nutrients. 2021. 13:1-17. doi:10.3390/nu13030972 591 Santos, Aseac, Rodrigues, Apds, Rosa, LPS, Noll, M, Silveira, EA. Traditional Brazilian Diet and Olive Oil Reduce Cardiometabolic Risk Factors in Severely Obese Individuals: A Randomized Trial. Nutrients. 2020. 12. doi:10.3390/nu12051413 592 Santos, KD, Moreira, TM, Belfort, GP, Silva, CFMD, Padilha, PC, Barros, DC, Saunders, C. 	parator come; Publication
 Macronutrient quality and all-cause mortality in the sun cohort. Nutrients. 2021. 13:1-17. doi:10.3390/nu13030972 591 Santos, Aseac, Rodrigues, Apds, Rosa, LPS, Noll, M, Silveira, EA. Traditional Brazilian Diet and Olive Oil Reduce Cardiometabolic Risk Factors in Severely Obese Individuals: A Randomized Trial. Nutrients. 2020. 12. doi:10.3390/nu12051413 592 Santos, KD, Moreira, TM, Belfort, GP, Silva, CFMD, Padilha, PC, Barros, DC, Saunders, C. Adaptation of DASH diet (Dietary Approach to Stop Hypertension) for postpartum nutritional care at 	parator come; Publication
 Macronutrient quality and all-cause mortality in the sun cohort. Nutrients. 2021. 13:1-17. doi:10.3390/nu13030972 591 Santos, Aseac, Rodrigues, Apds, Rosa, LPS, Noll, M, Silveira, EA. Traditional Brazilian Diet and Olive Oil Reduce Cardiometabolic Risk Factors in Severely Obese Individuals: A Randomized Trial. Nutrients. 2020. 12. doi:10.3390/nu12051413 592 Santos, KD, Moreira, TM, Belfort, GP, Silva, CFMD, Padilha, PC, Barros, DC, Saunders, C. 	parator come; Publication

593	Sarac, J, Auguštin, DH, Lovrić, M, Stryeck, S, Sunić, I, Novokmet, N, Missoni, S. A generation shift in mediterranean diet adherence and its association with biological markers and health in dalmatia, Croatia. Nutrients. 2021. 13.	Study Design
594	Saslow LR, Jones LM, Sen A, Wolfson JA, Diez HL, O'Brien A, Leung CW, Bayandorian H, Daubenmier J, Missel AL, Richardson C. Comparing Very Low-Carbohydrate vs DASH Diets for Overweight or Obese Adults With Hypertension and Prediabetes or Type 2 Diabetes: A Randomized Trial. 21.	Comparator
595	Sayón-Orea, C, Razquin, C, Bulló, M, Corella, D, Fitó, M, Romaguera, D, Vioque, J, Alonso-Gómez, ÁM, Wärnberg, J, Martínez, JA, Serra-Majem, L, Estruch, R, Tinahones, FJ, Lapetra, J, Pintó, X, Tur, JA, López-Miranda, J, Bueno-Cavanillas, A, Delgado-Rodríguez, M, Matía-Martín, P, Daimiel, L, Sánchez, VM, Vidal, J, Vázquez, C, Ros, E, Ruiz-Canela, M, Sorlí, JV, Castañer, O, Fiol, M, Navarrete-Muñoz, EM, Arós, F, Gómez-Gracia, E, Zulet, MA, Sánchez-Villegas, A, Casas, R, Bernal-López, R, Santos-Lozano, JM, Corbella, E, Bouzas, C, García-Arellano, A, Basora, J, Asensio, EM, Schröder, H, Moñino, M, García De La Hera, M, Tojal-Sierra, L, Toledo, E, Díaz- López, A, Goday, A, Salas-Salvadó, J, Martínez-González, MA. Effect of a Nutritional and Behavioral Intervention on Energy-Reduced Mediterranean Diet Adherence among Patients with Metabolic Syndrome: Interim Analysis of the PREDIMED-Plus Randomized Clinical Trial. JAMA - Journal of the American Medical Association. 2019. 322:1486-1499. doi:10.1001/jama.2019.14630	Intervention/Exposure; Outcome
596	Schaffer, AnnaE, D'Alessio, DavidA, Guyton, JohnR. Extreme elevations of low-density lipoprotein cholesterol with very low carbohydrate, high fat diets. Journal of Clinical Lipidology. 2021. 15:525-526. doi:10.1016/j.jacl.2021.04.010	Study Design; Publication Status
597	Schmidt KA, Cromer G, Burhans MS, Kuzma JN, Hagman DK, Fernando I, Murray M, Utzschneider KM, Holte S, Kraft J, Kratz M. Impact of low-fat and full-fat dairy foods on fasting lipid profile and blood pressure: exploratory endpoints of a randomized controlled trial. 114.	Intervention/Exposure
598	Schnermann ME, Schulz CA, Herder C, Alexy U, Nöthlings U. A lifestyle pattern during adolescence is associated with cardiovascular risk markers in young adults: results from the DONALD cohort study. 10.	Intervention/Exposure
599	Schutte, Sophie, Esser, Diederik, Siebelink, Els, Michielsen, CharlotteJR, Daanje, Monique, Matualatupauw, JuriC, Boshuizen, HendriekC, Mensink, Marco, Afman, LydiaA, team, The Wageningen Belly Fat Study. Diverging metabolic effects of 2 energy-restricted diets differing in nutrient quality: a 12-week randomized controlled trial in subjects with abdominal obesity. American Journal of Clinical Nutrition. 2022. 116:132-150. doi:10.1093/ajcn/nqac025	Intervention/Exposure
600	Schwingshackl, L, Knüppel, S, Michels, N, Schwedhelm, C, Hoffmann, G, Iqbal, K, De Henauw, S, Boeing, H, Devleesschauwer, B. Intake of 12 food groups and disability-adjusted life years from coronary heart disease, stroke, type 2 diabetes, and colorectal cancer in 16 European countries. European Journal of Epidemiology. 2019. 34:765-775. doi:10.1007/s10654-019-00523-4	Intervention/Exposure
601	Seangpraw, K, Auttama, N, Tonchoy, P, Panta, P. The effect of the behavior modification program Dietary Approaches to Stop Hypertension (DASH) on reducing the risk of hypertension among elderly patients in the rural community of Phayao, Thailand. Journal of Multidisciplinary Healthcare. 2019. 12:109-118. doi:10.2147/JMDH.S185569	Intervention/Exposure
602	Seconda, L, Baudry, J, Alles, B, Touvier, M, Hercberg, S, Pointereau, P, Lairon, D, Kesse-Guyot, E. Prospective associations between sustainable dietary pattern assessed with the Sustainable Diet Index (SDI) and risk of cancer and cardiovascular diseases in the French NutriNet-Sante cohort. Eur J Epidemiol. 2020. 35:471-481. doi:10.1007/s10654-020-00619-2	Intervention/Exposure
603	Seguin, R, Folta, S, Marshall, G, Graham, M, Strogatz, DS. The effect of a community-based healthy lifestyle behavior change program on simple 7 score among rural women. Circulation. 2019. 139. doi:10.1161/circ.139.suppl_1.P144	Publication Status; Comparator
604	Seguin-Fowler, RA, Eldridge, GD, Rethorst, CD, Graham, ML, Demment, M, Strogatz, D, Folta, SC, Maddock, JE, Nelson, ME, Ha, S. Improvements and Maintenance of Clinical and Functional Measures among Rural Women: Strong Hearts, Healthy Communities-2. 0 Cluster Randomized Trial. Circulation: Cardiovascular Quality and Outcomes. 2022. 15:E009333.	Intervention/Exposure
605	Seguin-Fowler, RA, Strogatz, D, Graham, ML, Eldridge, GD, Marshall, GA, Folta, SC, Pullyblank, K, Nelson, ME, Paul, L. The Strong Hearts, Healthy Communities Program 2.0: An RCT Examining Effects on Simple 7. Am J Prev Med. 2020. 59:32-40. doi:10.1016/j.amepre.2020.01.027	Intervention/Exposure
606	Seo, AR, Hwang, TY. Relationship between Dietary Patterns and Cardiovascular Disease Risk in Korean Older Adults. Int J Environ Res Public Health. 2021. 18. doi:10.3390/ijerph18073703	Study Design
607	Seremet Kurklu, N, Karatas Torun, N, Ozen Kucukcetin, I, Akyol, A. Is there a relationship between the dietary inflammatory index and metabolic syndrome among adolescents?. J Pediatr Endocrinol Metab. 2020. 33:495-502. doi:10.1515/jpem-2019-0409	Study Design
608	Serra, MC, Beavers, DP, Henderson, RM, Kelleher, JL, Kiel, JR, Beavers, KM. Effects of a hypocaloric, nutritionally complete, higher protein meal plan on regional body fat and cardiometabolic biomarkers in older adults with obesity. Annals of Nutrition and Metabolism. 2019. 74:149-155. doi:10.1159/000497066	Intervention/Exposure; Outcome

609	Setayesh, L, Ebrahimi, R, Pooyan, S, Yarizadeh, H, Rashidbeygi, E, Badrooj, N, Imani, H, Mirzaei,	Study Design;
	K. The possible mediatory role of adipokines in the association between low carbohydrate diet and	Intervention/Exposure;
	depressive symptoms among overweight and obese women. PLoS ONE. 2021. 16.	Outcome
610	Setiono, FJ, Jock, B, Trude, A, Wensel, CR, Poirier, L, Pardilla, M, Gittelsohn, J. Associations between Food Consumption Patterns and Chronic Diseases and Self-Reported Morbidities in 6	Study Design; Outcome
	American Indian Communities. Current Developments in Nutrition. 2019. 3:69-80.	Outcome
	doi:10.1093/cdn/nzz067	
611	Setyopranoto, I, Bayuangga, HF, Panggabean, AS, Alifaningdyah, S, Lazuardi, L, Dewi, FST,	Outcome; Country
	Malueka, RG. Prevalence of stroke and associated risk factors in sleman district of Yogyakarta	
	Special Region, Indonesia. Stroke Research and Treatment. 2019. 2019. doi:10.1155/2019/2642458	
612	Seyedi, SHS, Mottaghi, A, Mirmiran, P, Hedayati, M, Azizi, F. The relationship between dietary	Outcome
012	patterns and lipoprotein-associated phospholipase A2 levels in adults with cardiovascular risk	Outcome
	factors: Tehran Lipid and Glucose Study. J Res Med Sci. 2020. 25:3.	
	doi:10.4103/jrms.JRMS_256_19	
613	Sezaki, A, Imai, T, Miyamoto, K, Kawase, F, Shimokata, H. Mediterranean diet score and incidence	Study Design
	of IHD: a global comparative study. Public health nutrition. 2019. 22:1444-1450.	
614	doi:10.1017/S1368980018003877 Sezaki, A, Imai, T, Miyamoto, K, Kawase, F, Shirai, Y, Abe, C, Sanada, M, Inden, A, Kato, T,	Study Design
014	Suzuki, N, Shimokata, H. Global relationship between Mediterranean diet and the incidence and	Olddy Design
	mortality of ischaemic heart disease. Eur J Public Health. 2021. 31:608-612.	
	doi:10.1093/eurpub/ckab008	
615	Shah RV, Steffen LM, Nayor M, Reis JP, Jacobs DR, Allen NB, Lloyd-Jones D, Meyer K, Cole J,	Intervention/Exposure
616	Piaggi P, Vasan RS, Clish CB, Murthy VL. Dietary metabolic signatures and cardiometabolic risk. Shamsi, SA, Salehzadeh, M, Ghavami, H, Aghaji Asl, RG, Vatani, KK. Impact of lifestyle	Intervention/Exposure
010	interventions on reducing dietary sodium intake and blood pressure in patients with hypertension: A	Intervention/Exposure
	randomized controlled trial. Turk Kardiyol Dern Ars. 2021. 49:143-150. doi:10.5543/tkda.2021.81669	
617	Shang X, Li Y, Xu H, Zhang Q, Liu A, Du S, Guo H, Ma G. Leading dietary determinants identified	Country
	using machine learning techniques and a healthy diet score for changes in cardiometabolic risk	
- 04.0	factors in children: a longitudinal analysis. 19.	Outerman Orienter
618	Shang, X, Li, Y, Xu, H, Zhang, Q, Liu, A, Ma, G. The Clustering of Low Diet Quality, Low Physical Fitness, and Unhealthy Sleep Pattern and Its Association with Changes in Cardiometabolic Risk	Outcome; Country
	Factors in Children. Nutrients. 2020. 12. doi:10.3390/nu12020591	
619	Sharma, N, Raj, J, Seehra, N. Lipid profile evaluation in second and third trimester of pregnancy and	Country
	fetomaternal outcome. International Journal of Pharmaceutical Sciences Review and Research.	
	2021. 69:112-117. doi:10.47583/ijpsrr.2021.v69i01.017	0
620	Shi, J, Fang, H, Cheng, X, Guo, Q, Ju, L, Piao, W, Xu, X, Yu, D, Zhao, L, He, L. Nutrient Patterns and Its Association and Metabolic Syndrome among Chinese Children and Adolescents Aged 7?17.	Study Design; Intervention/Exposure
	Nutrients. 2023. 15.	
621	Shi, J, Fang, H, Guo, Q, Yu, D, Ju, L, Cheng, X, Piao, W, Xu, X, Li, Z, Mu, D, Zhao, L, He, L.	Study Design
	Association of Dietary Patterns with Metabolic Syndrome in Chinese Children and Adolescents	
	Aged 7-17: The China National Nutrition and Health Surveillance of Children and Lactating Mothers	
622	in 2016-2017. Nutrients. 2022. 14. Shi, Z, Ganji, V. Dietary patterns and cardiovascular disease risk among Chinese adults: a	Country
022	prospective cohort study. Eur J Clin Nutr. 2020. 74:1725-1735. doi:10.1038/s41430-020-0668-6	Country
623	Shih, CW, Hauser, ME, Aronica, L, Rigdon, J, Gardner, CD. Changes in blood lipid concentrations	Intervention/Exposure
	associated with changes in intake of dietary saturated fat in the context of a healthy low-	
	carbohydrate weight-loss diet: A secondary analysis of the Diet Intervention Examining the Factors	
	Interacting with Treatment Success (DIETFITS) trial. American Journal of Clinical Nutrition. 2019. 109:433-441. doi:10.1093/ajcn/nqy305	
624	Shim SY, Kim HC, Shim JS. Consumption of Ultra-Processed Food and Blood Pressure in Korean	Study Design
024	Adults.	Cludy Doolgh
625	Shim, JS, Jung, SJ, Kim, HC. Self-reported diet management, dietary quality, and blood pressure	Study Design
	control in Korean adults with hypertension. Clin Hypertens. 2019. 25:24. doi:10.1186/s40885-019-	
<u> </u>	0130-z Shim JS, Oh K, Jung SJ, Kim JJC, Salf Departed Diet Management and Adherence to Dietary	Study Desire
626	Shim, JS, Oh, K, Jung, SJ, Kim, HC. Self-Reported Diet Management and Adherence to Dietary Guidelines in Korean Adults with Hypertension. Korean Circ J. 2020. 50:432-440.	Study Design
	doi:10.4070/kcj.2019.0230	
627	Shin N, Kim J. Association between different types of plant-based diet and dyslipidaemia in Korean	Study Design
	adults. 128.	
628	Shin, J, Ham, D, Shin, S, Choi, SK, Paik, HY, Joung, H. Effects of lifestyle-related factors on	Intervention/Exposure
	ischemic heart disease according to body mass index and fasting blood glucose levels in Korean	
	adults. PLoS ONE. 2019. 14. doi:10.1371/journal.pone.0216534	

629	Shin, N, Kim, J. Association between different types of plant-based diet and dyslipidemia in Korean	Study Design
	adults. British Journal of Nutrition. 2021.	
630	Shivakoti R, Biggs ML, Djoussé L, Durda PJ, Kizer JR, Psaty B, Reiner AP, Tracy RP, Siscovick D, Mukamal KJ. Intake and Sources of Dietary Fiber, Inflammation, and Cardiovascular Disease in Older US Adults. 5.	Intervention/Exposure
631	Singh, S, Eastwood, CA. Nurses' awareness of diverse healthy diets may increase patients'	Study Design;
	adherence improving cardiovascular disease risk management. Evid Based Nurs. 2020. doi:10.1136/ebnurs-2020-103329	Publication Status
632	Siregar, DAS, Rianda, D, Irwinda, R, Dwi Utami, A, Hanifa, H, Shankar, AH, Agustina, R.	Study Design
	Associations between diet quality, blood pressure, and glucose levels among pregnant women in the Asian megacity of Jakarta. PLoS One. 2020. 15:e0242150. doi:10.1371/journal.pone.0242150	
633	Siritharan SS, Henry A, Gow ML, Roberts LM, Yao A, Ojurovic M, O'Sullivan AJ. Maternal macro-	Study Design;
	and micronutrient intake six months after hypertensive versus normotensive pregnancy: is poor diet	Intervention/Exposure
634	quality contributing to future cardiometabolic disease risk?. 23. Sisa, I, Abeyá-Gilardon, E, Fisberg, RM, Jackson, MD, Mangialavori, GL, Sichieri, R, Cudhea, F,	Study Design
	Bannuru, RR, Ruthazer, R, Mozaffarian, D, Singh, GM. Impact of diet on CVD and diabetes	olady Doolgh
	mortality in Latin America and the Caribbean: a comparative risk assessment analysis. Public health	
	nutrition. 2021. 24:2577.	
635	Skelly, LE, Barbour-Tuck, EN, Kurgan, N, Calleja, M, Klentrou, P, Falk, B, Josse, AR. Neutral Effect of Increased Dairy Product Intake, as Part of a Lifestyle Modification Program, on Cardiometabolic	Intervention/Exposure
	Health in Adolescent Girls With Overweight/Obesity: A Secondary Analysis From a Randomized	
	Controlled Trial. Front Nutr. 2021. 8:673589. doi:10.3389/fnut.2021.673589	
636	Skrypnik, K, Bogdanski, P, Kubasik, M, Wawrzyniak, N, Markuszewski, L, Suliburska, J. The	Study Design;
	influence of dietary patterns on arterial stiffness, lipid metabolism, and liver and renal function in the	Intervention/Exposure
637	population of Greater Poland. Acta scientiarum polonorum. Technologia alimentaria. 2020. 19:301. Smiljanec, K, Mbakwe, AU, Ramos-Gonzalez, M, Mesbah, C, Lennon, SL. Associations of Ultra-	Study Design
001	Processed and Unprocessed/Minimally Processed Food Consumption with Peripheral and Central	olddy Doolgi'
	Hemodynamics, and Arterial Stiffness in Young Healthy Adults. Nutrients. 2020. 12.	
	doi:10.3390/nu12113229	Ohudu Daaiaaa
638	Smith, PJ, Sherwood, A, Hinderliter, AL, Mabe, S, Tyson, C, Avorgbedor, F, Watkins, LL, Lin, P-H, Kraus, WE, Blumenthal, JA. Cerebrovascular Function, Vascular Risk, and Lifestyle Patterns in	Study Design; Intervention/Exposure;
	Resistant Hypertension. Journal of Alzheimer's disease : JAD. 2022.	Outcome
639	Song Y, Chang Z, Jia L, Song W, Wang H, Dong Q, Dou K. Better adherence to the MIND diet is	Health Status
	associated with lower risk of all-cause death and cardiovascular death in patients with	
640	atherosclerotic cardiovascular disease or stroke: a cohort study from NHANES analysis. Song Z, Yang R, Wang W, Huang N, Zhuang Z, Han Y, Qi L, Xu M, Tang YD, Huang T. Association	Intervention/Exposure;
040	of healthy lifestyle including a healthy sleep pattern with incident type 2 diabetes mellitus among	Outcome
	individuals with hypertension. 20.	
641	Song, S, Lee, K, Park, S, Shin, N, Kim, H, Kim, J. Association between unhealthful plant-based diets and possible risk of dyslipidemia. Nutrients. 2021. 13.	Study Design
642	Song, S, Lee, JE. Dietary patterns related to triglyceride and high-density lipoprotein cholesterol and	Outcome
	the incidence of type 2 diabetes in Korean men and women. Nutrients. 2019. 11.	
643	doi:10.3390/nu11010008 Soria-Contreras, DC, Rifas-Shiman, SL, Aris, IM, Perng, W, Switkowski, KM, Tellez-Rojo, MM,	Outcome; Comparator
040	Trejo-Valdivia, B, Lopez-Ridaura, R, Oken, E. Weight Trajectories After Delivery are Associated with	Outcome, Comparator
	Adiposity and Cardiometabolic Markers at 3 Years Postpartum Among Women in Project Viva. J	
	Nutr. 2020. 150:1889-1898. doi:10.1093/jn/nxaa104	
644	Soria-Florido, MT, Castaner, O, Lassale, C, Estruch, R, Salas-Salvado, J, Martinez-Gonzalez, MA, Corella, D, Ros, E, Aros, F, Elosua, R, Lapetra, J, Fiol, M, Alonso-Gomez, A, Gomez-Gracia, E,	Study Design; Intervention/Exposure
	Serra-Majem, L, Pinto, X, Bullo, M, Ruiz-Canela, M, Sorli, JV, Hernaez, A, Fito, M. Dysfunctional	
	High-Density Lipoproteins Are Associated With a Greater Incidence of Acute Coronary Syndrome in	
	a Population at High Cardiovascular Risk: A Nested Case-Control Study. Circulation. 2020.	
645	141:444-453. doi:10.1161/CIRCULATIONAHA.119.041658 Sotos-Prieto M, Ortolá R, Ruiz-Canela M, Garcia-Esquinas E, Martínez-Gómez D, Lopez-Garcia E,	Intervention/Exposure;
045	Martínez-González MÁ, Rodriguez-Artalejo F. Association between the Mediterranean lifestyle,	Outcome
	metabolic syndrome and mortality: a whole-country cohort in Spain. 20.	
646	Sotos-Prieto, M, Zhao, S, Kline, D, Brock, G, Gooding, H, Mattei, J, Rodriguez-Artalejo, F, Min, Y-I,	Intervention/Exposure
	Rimm, EB, Tucker, KL, Joseph, JJ. Application of a lifestyle-based score to predict cardiovascular	
647	risk in African Americans: The Jackson heart study. Journal of Clinical Medicine. 2021. 10. Sotos-Prieto, M, Ruiz-Canela, M, Song, Y, Christophi, C, Mofatt, S, Rodriguez-Artalejo, F, Kales,	Intervention/Exposure
4 71	SN. The Effects of a Mediterranean Diet Intervention on Targeted Plasma Metabolic Biomarkers	
	among US Firefighters: A Pilot Cluster-Randomized Trial. Nutrients. 2020. 12.	
	doi:10.3390/nu12123610	

648	Spence, David J, Tangney, Christy. Lower risk of stroke with a vegetarian diet. Neurology. 2020. 94:463-464. doi:10.1212/WNL.0000000000009092	Publication Status
649	Stanaway, FF, Ribeiro, RV, Khalatbari-Soltani, S, Cvejic, E, Blyth, FM, Naganathan, V, Handelsman, DJ, Le Couteur, DG, Simpson, SJ, Waite, LM, Cumming, RG, Hirani, V. Diet quality in an ethnically diverse population of older men in Australia. Eur J Clin Nutr. 2021. doi:10.1038/s41430-021-00893-7	Outcome
650	Steinberg, D, Kay, M, Burroughs, J, Svetkey, LP, Bennett, GG. The Effect of a Digital Behavioral Weight Loss Intervention on Adherence to the Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern in Medically Vulnerable Primary Care Patients: Results from a Randomized Controlled Trial. Journal of the Academy of Nutrition and Dietetics. 2019. 119:574-584. doi:10.1016/j.jand.2018.12.011	Confounders
651	Steinberg, DM, Kay, MC, Svetkey, LP, Askew, S, Christy, J, Burroughs, J, Ahmed, H, Bennett, GG. Feasibility of a Digital Health Intervention to Improve Diet Quality Among Women With High Blood Pressure: Randomized Controlled Feasibility Trial. JMIR Mhealth Uhealth. 2020. 8:e17536. doi:10.2196/17536	Intervention/Exposure; Comparator
652	Sterling, SR, Bowen, S-A. Effect of a Plant-based Intervention Among Black Individuals in the Deep South: A Pilot Study. Journal of nutrition education and behavior. 2022.	Study Design; Comparator
653	Strączek K, Horodnicka-Józwa A, Szmit-Domagalska J, Jackowski T, Safranow K, Petriczko E, Walczak M. Familial dietary intervention in children with excess body weight and its impact on eating habits, anthropometric and biochemical parameters. 13.	Intervention/Exposure
654	Subhan, FB, Chan, CB. Diet quality and risk factors for cardiovascular disease among South Asians in Alberta. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2019. 44:886-893. doi:10.1139/apnm-2018-0868	Study Design
655	Suliga, E, Brola, W, Sobaś, K, Cieśla, E, Jasińska, E, Gołuch, K, Głuszek, S. Dietary Patterns and Metabolic Disorders in Polish Adults with Multiple Sclerosis. Nutrients. 2022. 14.	Health Status
656	Sullivan, VK, Appel, LJ, Seegmiller, JC, McClure, ST, Rebholz, CM. A Low-Sodium DASH Dietary Pattern Affects Serum Markers of Inflammation and Mineral Metabolism in Adults with Elevated Blood Pressure. The Journal of nutrition. 2021. doi:10.1093/jn/nxab236	Study Duration
657	Sullivan, VK, Appel, LJ, Seegmiller, JC, Rebholz, CM. Effect of the dash-sodium diet on serum biomarkers of inflammation and mineral metabolism. Circulation. 2021. 143. doi:10.1161/circ.143.suppl_1.MP01	Study Duration; Publication Status
658	Sun Y, Liu B, Snetselaar LG, Wallace RB, Shadyab AH, Kroenke CH, Haring B, Howard BV, Shikany JM, Valdiviezo C, Bao W. Association of Major Dietary Protein Sources With All-Cause and Cause-Specific Mortality: Prospective Cohort Study. 10.	Intervention/Exposure
659	Sun, J, Buys, NJ, Hills, AP. Dietary pattern and its association with the prevalence of obesity, hypertension and other cardiovascular risk factors among Chinese older adults. International Journal of Environmental Research and Public Health. 2014. 11:3956.	Study Design
660	Sundfør, TM, Svendsen, M, Heggen, E, Dushanov, S, Klemsdal, TO, Tonstad, S. BMI modifies the effect of dietary fat on atherogenic lipids: A randomized clinical trial. American Journal of Clinical Nutrition. 2019. 110:832-841. doi:10.1093/ajcn/nqz113	Intervention/Exposure; Study Duration
661	Syrén, M-L, Turolo, S, de Marco, EA, De Cosmi, V, Risé, P, Marangoni, F, Minoli, DG, Manzoni, G, Agostoni, C. Whole blood fatty acid profile of young subjects and adherence to the Mediterranean diet: an observational cohort study. Lipids in health and disease. 2022. 21:23.	Intervention/Exposure; Outcome
662	Taba, N, Valge, H-K, Metspalu, A, Esko, T, Wilson, JF, Fischer, K, Pirastu, N. Mendelian Randomization Identifies the Potential Causal Impact of Dietary Patterns on Circulating Blood Metabolites. Frontiers in Genetics. 2021. 12.	Intervention/Exposure
663	Tan YWB, Lau JH, AshaRani PV, Roystonn K, Devi F, Lee YY, Whitton C, Wang P, Shafie S, Chang S, Jeyagurunathan A, Chua BY, Abdin E, Sum CF, Lee ES, Subramaniam M. Dietary patterns of persons with chronic conditions within a multi-ethnic population: results from the nationwide Knowledge, Attitudes and Practices survey on diabetes in Singapore. 80.	Study Design
664	TCTR20210428005, Effect of Lifestyle Modification on Metabolic factors, Musculoskeletal Health, Reproductive Hormone and Quality of life in Older People Who have Diabetes, Hypertension or Dyslipidemia. 2021.	Publication Status
665	Temporelli PL. Cardiovascular prevention: Mediterranean or low-fat diet?. 25.	Study Design
666	Terschüren, C, Damerau, L, Petersen, EL, Harth, V, Augustin, M, Zyriax, B-C. Association of dietary pattern, lifestyle and chronotype with metabolic syndrome in elderly—lessons from the population-based hamburg city health study. International Journal of Environmental Research and Public Health. 2022. 19.	Study Design
667	Thao U, Lajous M, Laouali N, Severi G, Boutron-Ruault MC, MacDonald CJ. Replacing processed red meat with alternative protein sources is associated with a reduced risk of hypertension and diabetes in a prospective cohort of French women.	Intervention/Exposure; Comparator

- 000		
668	Tischmann, L, Adam, TC, Mensink, RP, Joris, PJ. Longer-term soy nut consumption improves	Intervention/Exposure;
	vascular function and cardiometabolic risk markers in older adults: Results of a randomized, controlled cross-over trial. Clinical Nutrition. 2022. 41:1052.	Comparator
660	Tischmann, L, Drummen, M, Joris, PJ, Gatta-Cherifi, B, Raben, A, Fogelholm, M, Matias, I, Cota, D,	Intervention/Experies
669	Mensink, RP, Westerterp-Plantenga, MS, Adam, TC. Effects of a high-protein diet on	Intervention/Exposure
	cardiometabolic health, vascular function, and endocannabinoids— a preview study. Nutrients.	
	2020. 12. doi:10.3390/nu12051512	
670	Tisdel, DM, Gadberry, JJ, Burke, SL, Carlini, NA, Fleenor, BS, Campbell, MS. Dietary fat and	Study Design;
	alcohol in the prediction of indices of vascular health among young adults. Nutrition. 2021.	Intervention/Exposure;
	84:111120. doi:10.1016/j.nut.2020.111120	Outcome
671	Titcomb TJ, Liu B, Wahls TL, Snetselaar LG, Shadyab AH, Tabung FK, Saquib N, Arcan C, Tinker	Intervention/Exposure;
	LF, Wallace RB, Bao W. Comparison of the ketogenic ratio of macronutrients with the low-	Outcome
	carbohydrate diet score and their association with risk of type 2 diabetes in postmenopausal	
	women: A secondary analysis of the women's health initiative.	
672	Toh, DWK, Xia, X, Sutanto, CN, Low, JHM, Poh, KK, Wang, J-W, Foo, RS-Y, Kim, JE. Enhancing	Intervention/Exposure
	the cardiovascular protective effects of a healthy dietary pattern with wolfberry (Lycium barbarum): A	
	randomized controlled trial. American Journal of Clinical Nutrition. 2021. 114:80.	
673	Tosi M, Matelloni IA, Mancini M, Andreassi A, Scopari A, Rossi A, Verduci E, Berra C, Manfrini R,	Intervention/Exposure;
	Banderali G, Pecori Giraldi F, Folli F. Multiple beneficial effects of 1-year nutritional-behavioral	Comparator
674	intervention on anthropometric and metabolic parameters in overweight and obese boys.	Study Decign
674	Tripp, ML, Dahlberg, CJ, Eliason, S, Lamb, JJ, Ou, JJ, Gao, W, Bhandari, J, Graham, D, Dudleenamjil, E, Babish, JG. A Low-Glycemic, Mediterranean Diet and Lifestyle Modification	Study Design
	Program with Targeted Nutraceuticals Reduces Body Weight, Improves Cardiometabolic Variables	
	and Longevity Biomarkers in Overweight Subjects: A 13-Week Observational Trial. Journal of	
	Medicinal Food. 2019. 22:479-489. doi:10.1089/jmf.2018.0063	
675	Tsaban, G, Yaskolka Meir, A, Zelicha, H, Rinott, E, Kaplan, A, Shalev, A, Katz, A, Brikner, D,	Comparator
	Blüher, M, Ceglarek, U, Stumvoll, M, Stampfer, MJ, Shai, I. Diet-induced fasting ghrelin elevation	Comparator
	reflects the recovery of insulin sensitivity and visceral adiposity regression. The Journal of clinical	
	endocrinology and metabolism. 2021.	
676	Tsaban, G, Yaskolka Meir, A, Rinott, E, Zelicha, H, Kaplan, A, Shalev, A, Katz, A, Rudich, A, Tirosh,	Comparator
	A, Shelef, I, Youngster, I, Lebovitz, S, Israeli, N, Shabat, M, Brikner, D, Pupkin, E, Stumvoll, M,	
	Thiery, J, Ceglarek, U, Heiker, JT, Körner, A, Landgraf, K, Von Bergen, M, Blüher, M, Stampfer, MJ,	
	Shai, I. The effect of green Mediterranean diet on cardiometabolic risk; A randomised controlled	
	trial. Heart. 2020. doi:10.1136/heartjnl-2020-317802	
677	Tsai MC, Yeh TL, Hsu HY, Hsu LY, Lee CC, Tseng PJ, Chien KL. Comparison of four healthy lifestyle scores for predicting cardiovascular events in a national cohort study. 11.	Intervention/Exposure; Country
678	Tsoi KY, Chan RSM, Tam CHT, Li LS, Tam WH, Ma RCW. Dietary patterns of Chinese pregnant	Confounders
0/0	women in Hong Kong. 31.	Comounders
679	Tsoi, KY, Chan, RSM, Li, LS, McAuliffe, FM, Hanson, MA, Tam, WH, Ma, RCW. Evaluation of	Outcome
••••	dietary pattern in early pregnancy using the FIGO Nutrition Checklist compared to a food frequency	edicente
	questionnaire. Int J Gynaecol Obstet. 2020. 151 Suppl 1:37-44. doi:10.1002/ijgo.13324	
680	Tuleuova, R, Zhamaliyeva, L, Grjibovski, A. Dietary Factors and Changes in Blood Pressure in Adult	Intervention/Exposure
	Kazakhs: A 3-year Follow-Up Study. Open Access Macedonian Journal of Medical Sciences. 2022.	
	10:2146.	
681	Turner-McGrievy GM, Wilson MJ, Carswell J, Okpara N, Aydin H, Bailey S, Davey M, Hutto B,	Intervention/Exposure
	Wilcox S, Friedman DB, Sarzynski MA, Liese AD. A 12-Week Randomized Intervention Comparing	
	the Healthy US, Mediterranean, and Vegetarian Dietary Patterns of the US Dietary Guidelines for	
	Changes in Body Weight, Hemoglobin A1c, Blood Pressure, and Dietary Quality among African	
690	American Adults. 153.	Study Design
682	Turner-McGrievy, GM, Wirth, MD, Shivappa, N, Dunn, CG, Crimarco, A, Hurley, TG, West, DS, Hussey, JR, Hébert, JR. Impact of a 12-month Inflammation Management Intervention on the	Study Design; Intervention/Exposure;
	Dietary Inflammatory Index, inflammation, and lipids. Clinical Nutrition ESPEN. 2019. 30:42-51.	Comparator
	doi:10.1016/j.clnesp.2019.02.008	Comparator
683	Tuttolomondo, A, Di Raimondo, D, Casuccio, A, Velardo, M, Salamone, G, Arnao, V, Pecoraro, R,	Study Design; Health
	Della Corte, V, Restivo, V, Corpora, F, Maida, C, Simonetta, I, Cirrincione, A, Vassallo, V, Pinto, A.	Status
	Relationship between adherence to the Mediterranean Diet, intracerebral hemorrhage, and its	
	location. Nutrition, Metabolism and Cardiovascular Diseases. 2019. 29:1118-1125.	
	doi:10.1016/j.numecd.2019.06.010	
684	Tyson, CC, Davenport, CA, Lin, PH, Scialla, JJ, Hall, R, Diamantidis, CJ, Lunyera, J, Bhavsar, N,	Study Design;
	Rebholz, CM, Pendergast, J, Boulware, LE, Svetkey, LP. DASH diet and blood pressure among	Intervention/Exposure
	black Americans with and without CKD: The Jackson Heart Study. American Journal of	
	Hypertension. 2019. 32:975-982. doi:10.1093/ajh/hpz090	

685	Tzelefa V, Tsirimiagkou C, Argyris A, Moschonis G, Perogiannakis G, Yannakoulia M, Sfikakis P,	Study Design
005	Protogerou AD, Karatzi K. Associations of dietary patterns with blood pressure and markers of	Olddy Design
	subclinical arterial damage in adults with risk factors for CVD. 24.	
686	Tzelefa, V, Tsirimiagkou, C, Argyris, A, Moschonis, G, Perogiannakis, G, Yannakoulia, M, Sfikakis,	Study Design
	P, Protogerou, AD, Karatzi, K. Associations of dietary patterns with blood pressure and markers of	
	subclinical arterial damage in adults with risk factors for cardiovascular disease. Public health nutrition. 2021. 1-25. doi:10.1017/S1368980021003499	
687	Tzenios, N, Lewis, ED, Crowley, DC, Chahine, M, Evans, M. Examining the Efficacy of a Very-Low-	Study Design
	Carbohydrate Ketogenic Diet on Cardiovascular Health in Adults with Mildly Elevated Low-Density	, ,
	Lipoprotein Cholesterol in an Open-Label Pilot Study. Metabolic Syndrome and Related Disorders.	
	2022. 20:94.	Dublication Otatus
688	Uma Maheswari, S. Healthy hypertension. European Journal of Molecular and Clinical Medicine. 2020. 7:6025-6029.	Publication Status
689	Umeki Y, Hayabuchi H, Adachi H, Ohta M. Feasibility of Low-Sodium, High-Potassium Processed	Intervention/Exposure;
	Foods and Their Effect on Blood Pressure in Free-Living Japanese Men: A Randomized, Double-	Study Duration
	Blind Controlled Trial. 13.	
690	Umemoto, S, Onaka, U, Kawano, R, Kawamura, A, Motoi, S, Honda, N, Kanazashi, H, Mitarai, M,	Study Duration
	Dash Diet Study Group J. Effects of a Japanese Cuisine-Based Antihypertensive Diet and Fish Oil on Blood Pressure and Its Variability in Participants with Untreated Normal High Blood Pressure or	
	Stage I Hypertension: A Feasibility Randomized Controlled Study. J Atheroscler Thromb. 2020.	
	doi:10.5551/jat.57802	
691	Unal, SI, Pekcan, AG. Effect of almonds consumption on anthropometric measurements and blood	Publication Status
	parameters in overweight and obese females in a weight reduction program. Proceedings of the Nutrition Society. 2020. 79. doi:10.1017/S002966512000138X	
692	Urpi-Sarda, M, Casas, R, Sacanella, E, Corella, D, Andres-Lacueva, C, Llorach, R, Garrabou, G,	Outcome
	Cardellach, F, Sala-Vila, A, Ros, E, Ruiz-Canela, M, Fito, M, Salas-Salvado, J, Estruch, R. The 3-	• • • • • • • • • • • • • • • • • • • •
	Year Effect of the Mediterranean Diet Intervention on Inflammatory Biomarkers Related to	
	Cardiovascular Disease. Biomedicines. 2021. 9. doi:10.3390/biomedicines9080862	
693	Vahid F, Hoge A, Hébert JR, Bohn T. Association of diet quality indices with serum and metabolic biomarkers in participants of the ORISCAV-LUX-2 study.	Study Design
694	Vahid, F, Goodarzi, R, Shivappa, N, Hébert, JR, Fazeli Moghadam, E. Dietary Inflammatory Index	Intervention/Exposure;
	(DII®): A significant association between coronary heart disease and DII® in Armenian adults.	Publication Status
	European Journal of Preventive Cardiology. 2020. 27:2235-2237. doi:10.1177/2047487319880030	
695	Vamvakis, A, Gkaliagkousi, E, Lazaridis, A, Grammatikopoulou, MG, Triantafyllou, A, Nikolaidou, B,	Intervention/Exposure;
	Koletsos, N, Anyfanti, P, Tzimos, C, Zebekakis, P, Douma, S. Impact of intensive lifestyle treatment (Diet plus exercise) on endothelial and vascular function, arterial stiffness and blood pressure in	Health Status
	stage 1 hypertension: Results of the hintreat randomized controlled trial. Nutrients. 2020. 12.	
	doi:10.3390/nu12051326	
696	van Keulen, HM, van Breukelen, G, de Vries, H, Brug, J, Mesters, I. A randomized controlled trial	Intervention/Exposure
	comparing community lifestyle interventions to improve adherence to diet and physical activity	
	recommendations: the VitalUM study. European Journal of Epidemiology. 2021. 36:345-360. doi:10.1007/s10654-020-00708-2	
697	Vasilopoulou, D, Markey, O, Kliem, KE, Fagan, CC, Grandison, AS, Humphries, DJ, Todd, S,	Intervention/Exposure
	Jackson, KG, Givens, DI, Lovegrove, JA. Reformulation initiative for partial replacement of saturated	
	with unsaturated fats in dairy foods attenuates the increase in LDL cholesterol and improves flow-	
	mediated dilatation compared with conventional dairy: the randomized, controlled REplacement of	
	SaturatEd fat in dairy on Total cholesterol (RESET) study. Am J Clin Nutr. 2020. 111:739-748. doi:10.1093/ajcn/nqz344	
698	Vázquez-Manjarrez, N, Guevara-Cruz, M, Flores-López, A, Pichardo-Ontiveros, E, Tovar, AR,	Study Duration
	Torres, N. Effect of a dietary intervention with functional foods on LDL-C concentrations and	
	lipoprotein subclasses in overweight subjects with hypercholesterolemia: Results of a controlled	
699	trial. Clinical Nutrition. 2021. 40:2527-2534. doi:10.1016/j.clnu.2021.02.048 Vázguez-Ruiz Z, Toledo E, Vitelli-Storelli F, Goni L, de la O V, Bes-Rastrollo M, Martínez-González	Intervention/Exposure
033	MÁ. Effect of Dietary Phenolic Compounds on Incidence of Cardiovascular Disease in the SUN	
	Project; 10 Years of Follow-Up. 11.	
700	Verduci, E, Vizzuso, S, Ippolito, G, Vizzari, G, Amatruda, M, Radaelli, G, Agostoni, C. Effectiveness	Publication Status
	of individual vs. group-based lifestyle intervention on anthropometric and metabolic profile of obese	
	children. Journal of pediatric gastroenterology and nutrition. 2019. 68:1020	
701	doi:10.1097/MPG.0000000000002403 Vergara, M, Hauser, ME, Aronica, L, Rigdon, J, Fielding-Singh, P, Shih, CW, Gardner, CD.	Intervention/Exposure
	Associations of changes in blood lipid concentrations with changes in dietary cholesterol intake in	mervenuon/LAposure
	the context of a healthy low-carbohydrate weight loss diet: A secondary analysis of the dietfits trial.	
	Nutrients. 2021. 13.	

702	Veronese, N, Cisternino, AM, Shivappa, N, Hebert, JR, Notarnicola, M, Reddavide, R, Inguaggiato, R, Guerra, V, Logroscino, A, Rotolo, O, Chiloiro, M, Leandro, G, De Leonardis, G, Tutino, V, Misciagna, G, Fontana, L, Caruso, MG, Micol group. Dietary inflammatory index and mortality: a	Intervention/Exposure
	cohort longitudinal study in a Mediterranean area. J Hum Nutr Diet. 2020. 33:138-146.	
703	doi:10.1111/jhn.12701 Vinke PC, Navis G, Kromhout D, Corpeleijn E. Associations of Diet Quality and All-Cause Mortality	Outcome
105	Across Levels of Cardiometabolic Health and Disease: A 7.6-Year Prospective Analysis From the Dutch Lifelines Cohort. 44.	Outcome
704	Virtanen, HEK, Voutilainen, S, Koskinen, TT, Mursu, J, Kokko, P, Ylilauri, MPT, Tuomainen, TP, Salonen, JT, Virtanen, JK. Dietary proteins and protein sources and risk of death: The Kuopio ischaemic heart disease risk factor study. American Journal of Clinical Nutrition. 2019. 109:1462-1471. doi:10.1093/ajcn/ngz025	Intervention/Exposure; Outcome
705	Vitale, M, Calabrese, I, Massimino, E, Shivappa, N, Hebert, JR, Auciello, S, Grioni, S, Krogh, V, Sartore, G, Signorini, S, Rivellese, AA, Riccardi, G, Vaccaro, O, Masulli, M. Dietary inflammatory index score, glucose control and cardiovascular risk factors profile in people with type 2 diabetes. International journal of food sciences and nutrition. 2021. 72:529.	Health Status
706	Vizzuso, S, Amatruda, M, Banderali, G, Mameli, C, Zuccotti, G, Verduci, E. One year individual or group based lifestyle intervention in obese. Impact on metabolic profile and body composition. Obesity reviews. 2020. 21. doi:10.1111/obr.13118	Study Design; Publication Status
707	Voortman T, Chen Z, Girschik C, Kavousi M, Franco OH, Braun KVE. Associations between macronutrient intake and coronary heart disease (CHD): The Rotterdam Study. 40.	Intervention/Exposure
708	Vuholm, Stine, Rantanen, JesperM, Teisen, MarieN, Stark, KenD, Mølgaard, Christian, Christensen, JeppeH, Lauritzen, Lotte, Damsgaard, CamillaT. Effects of oily fish intake on cardiometabolic markers in healthy 8- to 9-y-old children: the FiSK Junior randomized trial. American Journal of Clinical Nutrition. 2019. 110:1296-1305. doi:10.1093/ajcn/nqz233	Intervention/Exposure
709	Wachsmuth, NB, Aberer, F, Haupt, S, Schierbauer, JR, Zimmer, RT, Eckstein, ML, Zunner, B, Schmidt, W, Niedrist, T, Sourij, H, Moser, O. The Impact of a High-Carbohydrate/Low Fat vs. Low-Carbohydrate Diet on Performance and Body Composition in Physically Active Adults: A Cross-Over Controlled Trial. Nutrients. 2022. 14.	Intervention/Exposure; Study Duration
710	Wade, A, Davis, C, Dyer, K, Hodgson, J, Woodman, R, Keage, H, Murphy, K. Can we modify the Mediterranean diet for non-Mediterranean populations Results from two randomised controlled trials. Proceedings of the Nutrition Society. 2020. 79. doi:10.1017/S0029665120002347	Study Duration; Publication Status
711	Wagner, S, Lioret, S, Girerd, N, Duarte, K, Lamiral, Z, Bozec, E, Van den Berghe, L, Hoge, A, Donneau, A-F, Boivin, J-M, Merckle, L, Zannad, F, Laville, M, Rossignol, P, Nazare, J-A. Association of dietary patterns derived using reduced-rank regression with subclinical cardiovascular damage according to generation and sex in the stanislas cohort. Journal of the American Heart Association. 2020. 9.	Study Design; Outcome
712	Wakasugi, M, Narita, I, Iseki, K, Asahi, K, Yamagata, K, Fujimoto, S, Moriyama, T, Konta, T, Tsuruya, K, Kasahara, M, Shibagaki, Y, Kondo, M, Watanabe, T. Healthy Lifestyle and Incident Hypertension and Diabetes in Participants with and without Chronic Kidney Disease: The Japan Specific Health Checkups (J-SHC) Study. Internal Medicine. 2022. 61:2841.	Intervention/Exposure
713	Walker, ME, O'Donnell, AA, Himali, JJ, Rajendran, I, Melo Van Lent, D, Ataklte, F, Jacques, PF, Beiser, AS, Seshadri, S, Vasan, RS, Xanthakis, V. Associations of the Mediterranean-DASH Intervention for Neurodegenerative Delay Diet with cardiac remodeling in the community: The Framingham Heart Study. British Journal of Nutrition. 2021. doi:10.1017/S0007114521000660	Study Design; Outcome
714	Walker, ME, Xanthakis, V, Peterson, LR, Duncan, MS, Lee, J, Ma, J, Bigornia, S, Moore, LL, Quatromoni, PA, Vasan, RS, Jacques, PF. Dietary Patterns, Ceramide Ratios, and Risk of All- Cause and Cause-Specific Mortality: The Framingham Offspring Study. J Nutr. 2020. 150:2994- 3004. doi:10.1093/jn/nxaa269	Intervention/Exposure
715	Walrabenstein, W, Wagenaar, CA, van der Leeden, M, Turkstra, F, Twisk, JWR, Boers, M, van Middendorp, H, Weijs, PJM, van Schaardenburg, D. A multidisciplinary lifestyle program for rheumatoid arthritis: the "Plants for Joints" randomized controlled trial. Rheumatology (Oxford, England). 2023.	Intervention/Exposure; Outcome; Comparator
716	Wan Y, Tabung FK, Lee DH, Fung TT, Willett WC, Giovannucci EL. Dietary Insulinemic Potential and Risk of Total and Cause-Specific Mortality in the Nurses' Health Study and the Health Professionals Follow-up Study.	Publication Status
717	Wan, Y, Wang, F, Yuan, J, Li, J, Jiang, D, Zhang, J, Li, H, Wang, R, Tang, J, Huang, T, etal, . Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut. 2019. 68:1417- 1429. doi:10.1136/gutjnl-2018-317609	Intervention/Exposure
718	Wand H, Vujovich-Dunn C, Moodley J, Reddy T, Naidoo S. Developing and Validating Risk Algorithm for Hypertension in South Africa: Results from a Nationally Representative Cohort (2008- 2017).	Study Design; Intervention/Exposure

719	Wang DD, Li Y, Nguyen XT, Song RJ, Ho YL, Hu FB, Willett WC, Wilson PWF, Cho K, Gaziano JM, Djoussé L, On Behalf Of The Va Million Veteran Program. Dietary Sodium and Potassium Intake and Risk of Non-Fatal Cardiovascular Diseases: The Million Veteran Program. 14.	Intervention/Exposure
720	Wang J, Lv S, Zhou Y, Sun Y, Zhu H, Yan G, Wu Y, Ma Y. The association between low carbohydrate diet scores and cardiometabolic risk factors in Chinese adults.	Study Design; Intervention/Exposure
721	Wang K, Wang L, Liu L, Zhou P, Mo S, Luo S, Zhang Y, Wang K, Yuan Y, Yin Z, Zhang Y. Longitudinal association of egg intake frequency with cardiovascular disease in Chinese adults.	Intervention/Exposure
722	Wang L, Li Y, Liu Y, Zhang H, Qiao T, Chu L, Luo T, Zhang Z, Dai J. Association between Different Types of Plant-Based Diets and Dyslipidemia in Middle-Aged and Elderly Chinese Participants. 15.	Study Design
723	Wang L, Yi Z. Association of the Composite dietary antioxidant index with all-cause and cardiovascular mortality: A prospective cohort study. 9.	Intervention/Exposure
724	Wang M, Zhou T, Song Q, Ma H, Hu Y, Heianza Y, Qi L. Ambient air pollution, healthy diet and vegetable intakes, and mortality: a prospective UK Biobank study.	Outcome
725	Wang Y, Chen B, Zhang J, Li H, Zeng X, Zhang Z, Zhu Y, Li X, Hu A, Zhao Q, Yang W. Diets with Higher Insulinemic Potential Are Associated with Increased Risk of Overall and Cardiovascular Disease-specific Mortality.	Intervention/Exposure
726	Wang Y, Fang Y, Witting PK, Charchar FJ, Sobey CG, Drummond GR, Golledge J. Dietary fatty acids and mortality risk from heart disease in US adults: an analysis based on NHANES. 13.	Intervention/Exposure
727	Wang Y, Feng L, Zeng G, Zhu H, Sun J, Gao P, Yuan J, Lan X, Li S, Zhao Y, Chen X, Dong H, Chen S, Li Z, Zhu Y, Li M, Li X, Yang Z, Li H, Fang H, Xie G, Lin PH, Chen J, Wu Y. Effects of Cuisine-Based Chinese Heart-Healthy Diet in Lowering Blood Pressure Among Adults in China:	Study Duration
728	Multicenter, Single-Blind, Randomized, Parallel Controlled Feeding Trial. Wang Z, Groen H, Cantineau AEP, van Elten TM, Karsten MDA, van Oers AM, Mol BWJ, Roseboom TJ, Hoek A. Effectiveness of a 6-Month Lifestyle Intervention on Diet, Physical Activity, Quality of Life, and Markers of Cardiometabolic Health in Women with PCOS and Obesity and Non- PCOS Obese Controls: One Size Fits All?. 13.	Intervention/Exposure
729	Wang, DD, Nguyen, LH, Li, Y, Yan, Y, Ma, W, Rinott, E, Ivey, KL, Shai, I, Willett, WC, Hu, FB, Rimm, EB, Stampfer, MJ, Chan, AT, Huttenhower, C. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nature Medicine. 2021. 27:333.	Outcome; Comparator
730	Wang, F, Baden, MY, Guasch-Ferré, M, Wittenbecher, C, Li, J, Li, Y, Wan, Y, Bhupathiraju, SN, Tobias, DK, Clish, CB, Mucci, LA, Eliassen, AH, Costenbader, KH, Karlson, EW, Ascherio, A, Rimm, EB, Manson, JAE, Liang, L, Hu, FB. Plasma metabolite profiles related to plant-based diets and the risk of type 2 diabetes. Diabetologia. 2022. 65:1119.	Outcome
731	Wang, J, Masters, WA, Bai, Y, Mozaffarian, D, Naumova, EN, Singh, GM. The International Diet- Health Index: a novel tool to evaluate diet quality for cardiometabolic health across countries. BMJ Glob Health. 2020. 5. doi:10.1136/bmjgh-2019-002120	Study Design
732	Wang, K, Li, Y, Liu, G, Rimm, E, Chan, AT, Giovannucci, EL, Song, M. Healthy Lifestyle for Prevention of Premature Death Among Users and Nonusers of Common Preventive Medications: A Prospective Study in 2 US Cohorts. J Am Heart Assoc. 2020. 9:e016692. doi:10.1161/JAHA.119.016692	Outcome; Comparator
733	Wang, Mengying, Ma, Hao, Song, Qiying, Zhou, Tao, Hu, Yonghua, Heianza, Yoriko, Manson, JoAnnE, Qi, Lu. Red meat consumption and all-cause and cardiovascular mortality: results from the UK Biobank study. European Journal of Nutrition. 2022. 61:2543-2553. doi:10.1007/s00394-022-02807-0	Intervention/Exposure
734	Wang, Y, Tu, R, Yuan, H, Shen, L, Hou, J, Liu, X, Niu, M, Zhai, Z, Pan, M, Wang, C. Associations of unhealthy lifestyles with metabolic syndrome in Chinese rural aged females. Sci Rep. 2020. 10:2718. doi:10.1038/s41598-020-59607-x	Intervention/Exposure; Outcome
735	Wang, Y-Y, Dai, Y, Tian, T, Zhang, J-X, Xie, W, Pan, D, Xu, D-F, Lu, Y-F, Wang, S-K, Xia, H, Sun, G-J. The effects of dietary pattern on metabolic syndrome in jiangsu province of china: Based on a nutrition and diet investigation project in Jiangsu province. Nutrients. 2021. 13.	Study Design; Country
736	Wang, Z, Huang, Q, Wang, L, Jiang, H, Wang, Y, Wang, H, Zhang, J, Zhai, F, Zhang, B. Moderate intake of lean red meat was associated with lower risk of elevated blood pressure in chinese women: Results from the china health and nutrition survey, 1991–2015. Nutrients. 2020. 12. doi:10.3390/nu12051369	Intervention/Exposure; Country
737	Ward, SJ, Hill, AM, Buckley, JD, Banks, S, Dhillon, VS, Holman, SL, Morrison, JL, Coates, AM. Minimal changes in telomere length after a 12-week dietary intervention with almonds in mid-age to older, overweight and obese Australians: Results of a randomised clinical trial. British Journal of Nutrition. 2022. 127:872.	Intervention/Exposure; Outcome
738	Wasserfurth, Paulina, Nebl, Josefine, Schuchardt, Jan Philipp, Müller, Mattea, Boßlau, Tim Konstantin, Krüger, Karsten, Hahn, Andreas. Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers—A Pilot Study. Nutrients. 2020. 12:2139. doi:10.3390/nu12072139	Intervention/Exposure; Comparator

739	Wei, L, Fan, J, Dong, R, Zhang, M, Jiang, Y, Zhao, Q, Zhao, G, Chen, B, Li, J, Liu, S. The Effect of Dietary Pattern on Metabolic Syndrome in a Suburban Population in Shanghai, China. Nutrients. 2023. 15.	Study Design
740	Wei, W, Jiang, W, Huang, J, Xu, J, Wang, X, Jiang, X, Wang, Y, Li, G, Sun, C, Li, Y, Han, T. Association of Meal and Snack Patterns With Mortality of All-Cause, Cardiovascular Disease, and Cancer: The US National Health and Nutrition Examination Survey, 2003 to 2014. J Am Heart Assoc. 2021. 10:e020254. doi:10.1161/JAHA.120.020254	Intervention/Exposure
741	Werba, JP, Giroli, MG, Simonelli, N, Vigo, L, Gorini, A, Bonomi, A, Veglia, F, Tremoli, E. Uptake and effectiveness of a primary cardiovascular prevention program in an underserved multiethnic urban community. Nutrition, Metabolism and Cardiovascular Diseases. 2022.	Study Design; Intervention/Exposure
742	Wernicke, C, Apostolopoulou, K, Hornemann, S, Efthymiou, A, Machann, J, Schmidt, S, Primessnig, U, Bergmann, MM, Grune, T, Gerbracht, C, Herber, K, Pohrt, A, Pfeiffer, AFH, Spranger, J, Mai, K. Long-term effects of a food pattern on cardiovascular risk factors and age-related changes of muscular and cognitive function. Medicine (Baltimore). 2020. 99:e22381. doi:10.1097/MD.00000000022381	Intervention/Exposure
743	Williamson, EJ, Polak, J, Simpson, JA, Giles, GG, English, DR, Hodge, A, Gurrin, L, Forbes, AB. Sustained adherence to a Mediterranean diet and physical activity on all-cause mortality in the Melbourne Collaborative Cohort Study: application of the g-formula. BMC Public Health. 2019. 19:1733. doi:10.1186/s12889-019-7919-2	Outcome
744	Wilson, Daniel, Driller, Matthew, Winwood, Paul, Clissold, Tracey, Johnston, Ben, Gill, Nicholas. The Effectiveness of a Combined Healthy Eating, Physical Activity, and Sleep Hygiene Lifestyle Intervention on Health and Fitness of Overweight Airline Pilots: A Controlled Trial. Nutrients. 2022. 14:1988-1988. doi:10.3390/nu14091988	Intervention/Exposure; Comparator
745	Wilson, DP, Williams, L, Kavey, R-EW. Hypertriglyceridemia in Youth. Journal of Pediatrics. 2022. 243:200.	Study Design
746	Wilson, JE, Blizzard, L, Gall, SL, Magnussen, CG, Oddy, WH, Dwyer, T, Venn, AJ, Smith, KJ. An age- and sex-specific dietary guidelines index is a valid measure of diet quality in an Australian cohort during youth and adulthood. Nutrition Research. 2019. 65:43-53. doi:10.1016/j.nutres.2019.01.007	Study Design
747	Wing, RR, Espeland, MA, Tate, DF, Perdue, LH, Bahnson, J, Polzien, K, Ferguson Robichaud, E, LaRose, JG, Gorin, AA, Lewis, CE, etal, . Changes in Cardiovascular Risk Factors Over 6 Years in Young Adults in a Randomized Trial of Weight Gain Prevention. Obesity (Silver Spring, Md.). 2020. 28:2323-2330. doi:10.1002/oby.23003	Intervention/Exposure
748	Winpenny, EM, van Sluijs, EMF, Forouhi, NG. How do short-term associations between diet quality and metabolic risk vary with age?. Eur J Nutr. 2021. 60:517-527. doi:10.1007/s00394-020-02266-5	Study Design
749	Wittenbecher, C, Guasch-Ferré, M, Haslam, DE, Dennis, C, Li, J, Bhupathiraju, SN, Lee, C-H, Qi, Q, Liang, L, Eliassen, AH, Clish, C, Sun, Q, Hu, FB. Changes in metabolomics profiles over ten years and subsequent risk of developing type 2 diabetes: Results from the Nurses' Health Study. eBioMedicine. 2022. 75.	Outcome
750	Wozniak, H, Larpin, C, de Mestral, C, Guessous, I, Reny, JL, Stringhini, S. Vegetarian, pescatarian and flexitarian diets: sociodemographic determinants and association with cardiovascular risk factors in a Swiss urban population. Br J Nutr. 2020. 124:844-852. doi:10.1017/S0007114520001762	Study Design
751	Wright KD, Klatt MD, Adams IR, Nguyen CM, Mion LC, Tan A, Monroe TB, Rose KM, Scharre DW. Mindfulness in Motion and Dietary Approaches to Stop Hypertension (DASH) in Hypertensive African Americans. 69.	Intervention/Exposure; Study Duration
752	Wu S, Zhang X, Zhao X, Hao X, Zhang S, Li P, Tan J. Preconception Dietary Patterns and Associations With IVF Outcomes: An Ongoing Prospective Cohort Study. 9.	Health Status; Outcome
753	Wu X, Tang W, Tang D, Hu Y, Zhang N, Dai S, Pan Y, Li J, Guan H, Meng J, Zhao X, Xiao X, Yin J. Two a posteriori dietary patterns are associated with risks of hyperuricemia among adults in less- developed multiethnic regions in Southwest China. 110.	Outcome
754	Wu, Y, Juraschek, SP, Hu, JR, Miller, ER. Higher carbohydrate amount and lower glycemic index increase hunger, diet satisfaction, and gastrointestinal symptom of heartburn: results from the omnicarb randomized clinical trial. Circulation. 2019. 140. doi:10.1161/circ.140.suppl_1.10951	Study Duration; Publication Status
755	Wurtz, AML, Hansen, MD, Tjonneland, A, Rimm, EB, Schmidt, EB, Overvad, K, Jakobsen, MU. Replacement of potatoes with other vegetables and risk of myocardial infarction in the Danish Diet, Cancer and Health cohort. Br J Nutr. 2021. 1-8. doi:10.1017/S0007114521000349	Intervention/Exposure
756	Xia X, Toh DWK, Ng SL, Zharkova O, Poh KK, Foo RSY, Wang JW, Kim JE. Impact of following a healthy dietary pattern with co-consuming wolfberry on number and function of blood outgrowth endothelial cells from middle-aged and older adults.	Intervention/Exposure; Comparator
757	Xia, Y, Cao, L, Zhang, Q, Liu, Ľ, Zhang, S, Meng, G, Wu, H, Gu, Y, Sun, S, Wang, X, Zhou, M, Jia, Q, Song, K, Wu, Q, Niu, K, Zhao, Y. Adherence to a vegetable dietary pattern attenuates the risk of non-alcoholic fatty liver disease in incident type 2 diabetes: The TCLSIH cohort study. Journal of Internal Medicine. 2022. 291:469.	Outcome

758	Xiao X, Qin Z, Lv X, Dai Y, Ciren Z, Yangla Y, Zeng P, Ma Y, Li X, Wang L, Hu Y, Yang F, Fan C, Tang D, Dai S, Zhang N, Xie X, Yin J, Zhao X. Dietary patterns and cardiometabolic risks in diverse less-developed ethnic minority regions: results from the China Multi-Ethnic Cohort (CMEC) Study.	Study Design
759	15. Xu C, Cao Z, Yang H, Hou Y, Wang X, Wang Y. Association Between the EAT-Lancet Diet Pattern and Diek of Tume 2 Diebstee: A Breenesting Cabert Study, 9	Outcome
760	and Risk of Type 2 Diabetes: A Prospective Cohort Study. 8. Xu C, Cao Z. Cardiometabolic diseases, total mortality, and benefits of adherence to a healthy lifestyle: a 13-year prospective UK Biobank study. 20.	Intervention/Exposure
761	Xu, X, Shi, Z, Liu, G, Chang, D, Inglis, SC, Hall, JJ, Schutte, AE, Byles, JE, Parker, D. The Joint Effects of Diet and Dietary Supplements in Relation to Obesity and Cardiovascular Disease over a 10-Year Follow-Up: A Longitudinal Study of 69,990 Participants in Australia. Nutrients. 2021. 13. doi:10.3390/nu13030944	Comparator
762	Yamada, S, Inoue, G, Ooyane, H, Nishikawa, H. Changes in body weight, dysglycemia, and dyslipidemia after moderately low-carbohydrate diet education (Locabo challenge program) among workers in japan. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2021. 14:2863-2870. doi:10.2147/DMSO.S317371	Study Design; Intervention/Exposure
763	Yang J, Yang A, Yeung S, Woo J, Lo K. Joint Associations of Food Groups with All-Cause and Cause-Specific Mortality in the Mr. OS and Ms. OS Study: A Prospective Cohort. 14.	Intervention/Exposure
764	Yang Y, Yu D, Piao W, Huang K, Zhao L. Nutrient-Derived Beneficial for Blood Pressure Dietary Pattern Associated with Hypertension Prevention and Control: Based on China Nutrition and Health Surveillance 2015-2017. 14.	Study Design
765	Yang, Q, Cogswell, ME, Dana Flanders, W, Hong, Y, Zhang, Z, Loustalot, F, Gillespie, C, Merritt, R, Hu, FB. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among us adults. JAMA. 2012. 307:1273.	Study Design; Publication Date
766	Yau, K-Y, Law, P-S, Wong, C-N. Cardiac and Mental Benefits of Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diet plus Forest Bathing (FB) versus MIND Diet among Older Chinese Adults: A Randomized Controlled Pilot Study. International Journal of Environmental Research and Public Health. 2022. 19.	Study Duration
767	Yazdanpanah, Z, Salehi-Abargouei, A, Mollahosseini, M, Sheikhha, MH, Mirzaei, M, Mozaffari- Khosravi, H. The cluster of differentiation 36 (CD36) rs1761667 polymorphism interacts with dietary patterns to affect cardiometabolic risk factors and metabolic syndrome risk in apparently healthy individuals. British Journal of Nutrition. 2023.	Study Design
768	Yi K, Cui S, Tang M, Wu Y, Xiang Y, Yu Y, Tong X, Jiang Y, Zhao Q, Zhao G. Adherence to DASH Dietary Pattern and Its Association with Incident Hyperuricemia Risk: A Prospective Study in Chinese Community Residents. 14.	Outcome
769	Yi SY, Steffen LM, Haring B, Rebholz CM, Mosley TH, Shah AM. Associations of the Dietary Approaches to Stop Hypertension dietary pattern with cardiac structure and function.	Outcome
770	Yisahak, SF, Mumford, SL, Grewal, J, Li, M, Zhang, C, Grantz, KL, Hinkle, SN. Maternal diet patterns during early pregnancy in relation to neonatal outcomes. American Journal of Clinical Nutrition. 2021. 114:358.	Outcome
771	Yisahak, SF, Hinkle, SN, Mumford, SL, Li, M, Andriessen, VC, Grantz, KL, Zhang, C, Grewal, J. Vegetarian diets during pregnancy, and maternal and neonatal outcomes. Int J Epidemiol. 2021. 50:165-178. doi:10.1093/ije/dyaa200	Intervention/Exposure
772	Yokose, C, McCormick, N, Rai, SK, Lu, N, Curhan, G, Schwarzfuchs, D, Shai, I, Choi, HK. Effects of Low-Fat, Mediterranean, or Low-Carbohydrate Weight Loss Diets on Serum Urate and Cardiometabolic Risk Factors: A Secondary Analysis of the Dietary Intervention Randomized Controlled Trial (DIRECT). Diabetes Care. 2020. 43:2812-2820. doi:10.2337/dc20-1002	Intervention/Exposure
773	Yoshida H. Is the Japan Diet Instrumental in Preventing Cardiovascular Diseases?. 28.	Study Design
774	Yu, G, Fu, H, Huang, W, Zhang, N, Deng, D, Li, G, Lei, H. A Dietary Pattern of Higher Fish, Egg, Milk, Nut, Vegetable and Fruit, and Lower Salt Intake Correlates With the Prevalence and Control of Hypertension. American Journal of Hypertension. 2018. 31:679.	Study Design; Country
775	Yu, S, Guo, X, Li, G, Yang, H, Sun, G, Zheng, L, Sun, Y. Gender discrepancy of incidence and risk factors of metabolic syndrome among rural Chinese from 2012-2013 to 2015-2017. Diabetol Metab Syndr. 2020. 12:48. doi:10.1186/s13098-020-00542-2	Outcome
776	Yuan, WL, Bernard, JY, Armand, M, Sarté, C, Charles, MA, Heude, B. Associations of Maternal Consumption of Dairy Products during Pregnancy with Perinatal Fatty Acids Profile in the EDEN Cohort Study. Nutrients. 2022. 14.	Intervention/Exposure
777	Zafarmand, MH, Spanjer, M, Nicolaou, M, Wijnhoven, HAH, van Schaik, BDC, Uitterlinden, AG, Snieder, H, Vrijkotte, TGM. Influence of Dietary Approaches to Stop Hypertension-Type Diet, Known Genetic Variants and Their Interplay on Blood Pressure in Early Childhood: ABCD Study. Hypertension. 2020. 75:59-70. doi:10.1161/HYPERTENSIONAHA.118.12292	Study Design

778	Zamanillo-Campos, R, Chaplin, A, Romaguera, D, Abete, I, Salas-Salvadó, J, Martín, V, Estruch, R, Vidal, J, Ruiz-Canela, M, Babio, N, Fiol, F, de Paz, JA, Casas, R, Olbeyra, R, Martínez-González, MA, García-Gavilán, JF, Goday, A, Fernandez-Lazaro, CI, Martínez, JA, Hu, FB, Konieczna, J. Longitudinal association of dietary carbohydrate quality with visceral fat deposition and other adiposity indicators. Clinical Nutrition. 2022. 41:2264.	Intervention/Exposure
779	Zamora-Ros, R, Cayssials, V, Cleries, R, Redondo, ML, Sánchez, MJ, Rodríguez-Barranco, M, Sánchez-Cruz, JJ, Mokoroa, O, Gil, L, Amiano, P, Navarro, C, Chirlaque, MD, Huerta, JM, Barricarte, A, Ardanaz, E, Moreno-Iribas, C, Agudo, A. Moderate egg consumption and all-cause and specific-cause mortality in the Spanish European Prospective into Cancer and Nutrition (EPIC- Spain) study. European Journal of Nutrition. 2019. 58:2003-2010. doi:10.1007/s00394-018-1754-6	Intervention/Exposure
780	Zeng, Xufen, Li, Xiude, Zhang, Zhuang, Li, Hairong, Wang, Yingying, Zhu, Yu, Hu, Anla, Zhao, Qihong, Tang, Min, Zhang, Xuehong, Huang, Jiaqi, Yang, Wanshui. A prospective study of carbohydrate intake and risk of all-cause and specific-cause mortality. European Journal of Nutrition. 2022. 61:3149-3160. doi:10.1007/s00394-022-02877-0	Intervention/Exposure
781	Zhang N, Xiao X, Xu J, Zeng Q, Li J, Xie Y, Guo B, Dai S, Zhu X, Lei Y, Duojizhuoma, Yin J, Zhao X. Dietary Approaches to Stop Hypertension (DASH) diet, Mediterranean diet and blood lipid profiles in less-developed ethnic minority regions.	Study Design
782	Zhang N, Zhou M, Li M, Ma G. Effects of Smartphone-Based Remote Interventions on Dietary Intake, Physical Activity, Weight Control, and Related Health Benefits Among the Older Population With Overweight and Obesity in China: Randomized Controlled Trial. 25.	Intervention/Exposure; Comparator
783	Zhang X, Lu J, Yang Y, Cui J, Zhang X, Xu W, Song L, Wu C, Wang Q, Wang Y, Wang R, Li X. Cardiovascular disease prevention and mortality across 1 million urban populations in China: data from a nationwide population-based study. 7.	Intervention/Exposure
784	Zhang, H, Zeng, Y, Yang, H, Hu, Y, Hu, Y, Chen, W, Ying, Z, Sun, Y, Qu, Y, Li, Q, Valdimarsdottir, UA, Song, H. Familial factors, diet, and risk of cardiovascular disease: a cohort analysis of the UK Biobank. Am J Clin Nutr. 2021. doi:10.1093/ajcn/nqab261	Intervention/Exposure
785	Zhang, S, Zhuang, X, Lin, X, Zhong, X, Zhou, H, Sun, X, Xiong, Z, Huang, Y, Fan, Y, Guo, Y, Du, Z, Liao, X. Low-Carbohydrate Diets and Risk of Incident Atrial Fibrillation: A Prospective Cohort Study. Journal of the American Heart Association. 2019. 8. doi:10.1161/JAHA.119.011955	Intervention/Exposure
786	Zhang, Y-Bo, Chen, C, Pan, X-Fi, Guo, J, Li, Y, Franco, OH, Liu, G, Pan, A. Associations of healthy lifestyle and socioeconomic status with mortality and incident cardiovascular disease: Two prospective cohort studies. The BMJ. 2021. 373.	Intervention/Exposure; Outcome
787	Zhang, Y-J, Li, Z-H, Shen, D, Zhang, P-D, Fu, S-H, Yao, Y, Wang, J-X, Chen, P-L, Zhang, P, Zhang, X-R, Mao, C. Association of Combined Lifestyle and Polygenetic Risk with Incidence of Venous Thromboembolism: A Large Population-Based Cohort Study. Thrombosis and Haemostasis. 2022. 122:1549.	Health Status; Outcome
788	Zhao J, Guo W, Wang J, Wang T. Exploring the Association of Dietary Patterns with the Risk of Hypertension Using Principal Balances Analysis and Principal Component Analysis.	Country
789	Zhao R, Zhao L, Gao X, Yang F, Yang Y, Fang H, Ju L, Xu X, Guo Q, Li S, Cheng X, Cai S, Yu D, Ding G. Geographic Variations in Dietary Patterns and Their Associations with Overweight/Obesity and Hypertension in China: Findings from China Nutrition and Health Surveillance (2015-2017). 14.	Study Design
790	Zhao, H, Andreyeva, T. Diet Quality and Health in Older Americans. Nutrients. 2022. 14.	Study Design
791	Zhao, Y, Naumova, EN, Bobb, JF, Claus Henn, B, Singh, GM. Joint Associations of Multiple Dietary Components with Cardiovascular Disease Risk: A Machine-Learning Approach. American Journal of Epidemiology. 2021. 190:1353.	Intervention/Exposure; Outcome
792	Zhen J, Liu S, Zhao G, Peng H, Xu A, Li C, Wu J, Cheung BMY. Impact of healthy lifestyles on risk of hypertension in the Chinese population: finding from SHUN-CVD study.	Study Design; Intervention/Exposure
793	Zheng, C, Pettinger, M, Gowda, GAN, Lampe, JW, Raftery, D, Tinker, LF, Huang, Y, Navarro, SL, O'Brien, DM, Snetselaar, L, Liu, S, Wallace, RB, Neuhouser, ML, Prentice, RL. Biomarker-calibrated Red and Combined Red and Processed Meat Intakes with Chronic Disease Risk in a Cohort of Postmenopausal Women. The Journal of nutrition. 2022.	Intervention/Exposure
794	Zhong, VW, Allen, NB, Greenland, P, Carnethon, MR, Ning, H, Wilkins, JT, Lloyd-Jones, DM, Van Horn, L. Protein foods from animal sources, incident cardiovascular disease and all-cause mortality: a substitution analysis. Int J Epidemiol. 2021. 50:223-233. doi:10.1093/ije/dyaa205	Intervention/Exposure
795	Zhou J, Leepromrath S, Zhou D. Dietary diversity indices versus dietary guideline-based indices and their associations with non-communicable diseases, overweight and energy intake: evidence from China.	Study Design; Country
796	Zhou, L, Feng, Y, Yang, Y, Zhao, X, Fan, Y, Rong, J, Liu, D, Zhao, L, Yu, Y. Diet behaviours and hypertension inUS adults: The NationalHealth and Nutrition Examination Survey 2013-2014. Journal of Hypertension. 2019. 37:1230-1238. doi:10.1097/HJH.000000000002037	Study Design

797	Zhou, YF, Song, XY, Wu, J, Chen, GC, Neelakantan, N, van Dam, RM, Feng, L, Yuan, JM, Pan, A, Koh, WP. Association Between Dietary Patterns in Midlife and Healthy Ageing in Chinese Adults: The Singapore Chinese Health Study. J Am Med Dir Assoc. 2021. 22:1279-1286.	Outcome
	doi:10.1016/j.jamda.2020.09.045	
798	Zhu, R, Fogelholm, M, Jalo, E, Poppitt, SD, Silvestre, MP, Møller, G, Huttunen-Lenz, M, Stratton, G,	Intervention/Exposure
	Sundvall, J, Macdonald, IA, Handjieva-Darlenska, T, Handjiev, S, Navas-Carretero, S, Martinez, JA,	
	Muirhead, R, Brand-Miller, J, Raben, A. Animal-based food choice and associations with long-term	
	weight maintenance and metabolic health after a large and rapid weight loss: The PREVIEW study.	
	Clinical Nutrition. 2022. 41:817.	
799	Zhu, X-C, Lin, J, Wang, Q, Liu, H, Qiu, L, Fang, D-Z. Associations of lipoprotein lipase gene rs326	Study Duration
	with changes of lipid profiles after a high-carbohydrate and low-fat diet in healthy Chinese Han	
	youth. International Journal of Environmental Research and Public Health. 2014. 11:4544.	
800	Zinn, C, McPhee, J, Harris, N, Williden, M, Prendergast, K, Schofield, G. A 12-week low-	Intervention/Exposure
	carbohydrate, high-fat diet improves metabolic health outcomes over a control diet in a randomised	
	controlled trial with overweight defence force personnel. Applied physiology, nutrition & metabolism.	
	2017. 42:1158-1164. doi:10.1139/apnm-2017-0260	
801	Zomeño, MD, Lassale, C, Perez-Vega, A, Perez-Fernández, S, Basora, J, Babió, N, Llimona, R,	Outcome
	Paz-Graniel, I, Muñoz, J, Salas, J, Pintó, X, Sacanella, E, Fitó, M, Subirana, I, Schröder, H, Goday,	
	A, Castaner, O. Halo effect of a Mediterranean-lifestyle weight-loss intervention on untreated family	
	members' weight and physical activity: a prospective study. International Journal of Obesity. 2021.	
	45:1240-1248. doi:10.1038/s41366-021-00763-z	
802	Zuercher MD, Harvey DJ, Santiago-Torres M, Au LE, Shivappa N, Shadyab AH, Allison M,	Intervention/Exposure
	Snetselaar L, Liu B, Robbins JA, Hébert JR, Garcia L. Dietary inflammatory index and	
	cardiovascular disease risk in Hispanic women from the Women's Health Initiative. 22.	

Appendix 6: Dietary pattern visualization

The Committee's synthesis was facilitated by a data visualization table (**Table A 14**) that presented the dietary pattern components in each of the dietary patterns examined in the body of evidence. During evidence synthesis, these tables were used in conjunction with other materials to compare and contrast the components in the dietary patterns studied along with the direction, magnitude, and statistical significance of reported results. Detailed information about the body of evidence, including a description of each dietary pattern in more detail, study and population characteristics, outcomes, key confounders accounted for, and funding sources, are summarized in the evidence tables of this report (**Table 5** and **Table 7**).

Each column represents the most commonly reported foods/food groups or nutrients across dietary patterns in this body of evidence. Two additional columns, "Other, A" and "Other, B", captured a variety of other components less frequently reported across dietary patterns that did not fit into one of the preceding columns or categories, such as fast food, ready-to-eat dishes, pizza, and chocolate. Multiple symbols in each cell mean that the dietary pattern included multiple components from that column/category. Empty cells mean that the dietary pattern did not include a component within that column/category.

Table A 14. Visualization of dietary pattern components organized by approach across evidence examining the relationship between dietary patterns consumed during pregnancy and hypertensive disorders of pregnancy *[†]

Article; Dietary pattern	Vegetables	Potato	Legumes	Fruit	Fruit Juice	Nuts, Seeds	Grains: Whole	Grains	Grains: Refined	Fish, Seafood	Meats (Red Processed)	Lean meats (Poultry)	Eggs	Dairy	Dairy: Low, non-fat	Dairy: Whole, high fat	SSB	Sugary Foods	Fat: Unsaturated, Oils	Fat: Other	Fat: Saturated	Alcohol	Sodium	Tea and Coffee	Other A	Other B
RCT Al Wattar, 2019; ²⁴ Mediterranean (Med.) w/ mixed nuts + EVOO			A		Fr	▲ N					▼ RP	▲ W:R					V	▼	A 00		•					
Assaf-Balut, 2017; ²⁵ Med. w/ mixed nuts + EVOO			A		Fr	▲ N					▼ RP	▲ W:R					•	•	▲ 00		•				•	
Assaf-Balut, 2019; ²⁶ Med. w/ mixed nuts + EVOO					Fr	▲ N					▼ RP	₩:R					•	•	00		•					
Melero, 2020; ³⁰ Med. w/ mixed nuts + EVOO			A			N				▲ F	▼ RP	▲ W:R					▼	•	A 00		▼					
Zhao, 2022; ³¹ Med. w/ recommended pistachios + EVOO			A		Fr	▲ N					▼ RP	▲ W:R					•	•	00		•	▲ R W				
Dodd, 2019; ²⁸ Australian dietary standards																										
Crovetto, 2021; ²⁷ Med. w/ walnuts + EVOO						▲ N			V	▲ F	▼ RP						V	•	▲ 00		•					
Khoury, 2005; ²⁹ Cholesterol- Iowering diet						•					▼ M	М				▼			▲ 00		▼					

^{*} A Positively-scored component, reflecting higher intake within the food category as part of the pattern; Vegatively-scored component, reflecting lower intake within the food category as part of the pattern; Vegatively-scored component, reflecting moderate (in contrast to higher or lower) intake within the food category as part of the pattern.

[†] Abbreviations: AS, added sugar; C, coffee; CH, cheese; F, fish; FF, fried potato; Fr, included with Fruit component; JSSB, fruit juice and SSB; LN, legumes and nuts; LNS, legumes, nuts, and seeds; MI:J, ratio of milk to juice; MUFA, monounsaturated fatty acids; M, meat and/or meat products; N, nuts; n-3, omega-3 fatty acids; OC, oils and condiments; OO, olive oil; PRO, protein; PUFA, polyunsaturated fatty acids; RP, red and processed meat; RW, red and white meat; S, seafood; SFA, saturated fatty acids; SW, sweet snacks, SSB, and desserts; T, tea; TFA, trans fatty acids; UP, ultra-processed foods; W:R, ratio of white to red meat; W:SSB, ratio of water to SSB, WG:RG, ratio of whole grain bread to refined grain bread; Y, yogurt

Article; Dietary pattern	Vegetables	Potato	Legumes	Fruit	Fruit Juice	Nuts, Seeds	Grains: Whole	Grains	Grains: Refined	Fish, Seafood	Meats (Red Processed)	Lean meats (Poultry)	Eggs	Dairy	Dairy: Low, non-fat	Dairy: Whole, high fat	SSB	Sugary Foods	Fat: Unsaturated, Oils	Fat: Other	Fat: Saturated	Alcohol	Sodium	Tea and Coffee	Other A	Other B
NRCT Melero, 2020; ³⁰										▲ F	V						▼	▼	▲ 00		▼					
Med. w/ mixed nuts + EVOO Index/Score						Ν				F	RP	W:R							00							
Arvizu, 2020; ¹ DASH			▲ LN		Fr	LN					▼ RP						▼						▼			
Fulay, 2018; ⁷ DASH			LN		Fr	LN	▲				▼ RP						▼						▼			
Fulay, 2018; ⁷ DASH OMNI			▲ LN		Fr	LN	▲				▼ RP						•		▲ MUFA +PUFA				•			
Li, 2021; ¹⁴ DASH			▲ LN		Fr	LN					▼ RP						▼						▼			
Wiertsema, 2021; ²² DASH			▲ LN		Fr	LN					▼ RP						▼						▼			
Courtney, 2020; ³ Modified DASH			▲ LNS		Fr	LNS					▼ RP						▼ SW	SW					▼			
Miller, 2022; ¹⁸ Modified DASH			LNS		▼ JSS B	LNS				F	▼ RP						JSS B						•			
Makarem, 2022; ¹⁶ aMED						N				F	▼ RP								▲ MUFA:SF A		MUFA:SF A	•				
Miller, 2022; ¹⁸ aMED						▲ N				F	▼ RP								▲ MUFA:SF A		MUFA:SF A	•				
Li, 2021; ¹⁴ aMED						▲ N		•		▲ F	▼ RP			◄									▼			
Flor-Alemany, 2021; ⁶ MedDietScore										▲ F	▼ RP	•				▼			▲ 00							
Li, 2021; ¹⁴ AHEI- 2010			▲ LN		•	LN	▲				▼ RP						•		▲ n-3; PUFA							
Yee, 2020; ²³ HEI- 2010			▲ PR O		Fr	PR O	▲		•	PR O	PR O	PR O	PR O	▲			▼ AS	AS	A		•	•	•			
Miller, 2022; ¹⁸ HEI-2015			A PR O		Fr	PR O			•	PR O	PR O	PR O	PR O				▼ AS	AS	▲ PUFA+ MUFA: SFA		V	•	•			

Article; Dietary pattern	Vegetables	Potato	Legumes	Fruit	Fruit Juice	Nuts, Seeds	Grains: Whole	Grains	Grains: Refined	Fish, Seafood	Meats (Red Processed)	Lean meats (Poultry)	Eggs	Dairy	Dairy: Low, non-fat	Dairy: Whole, high fat	SSB	Sugary Foods	Fat: Unsaturated, Oils	Fat: Other	Fat: Saturated	Alcohol	Sodium	Tea and Coffee	Other A	Other B
Arvizu, 2020; ¹ AHA Primary																	▼						▼			
Arvizu, 2020; ¹ AHA Secondary											▼ P						▼						▼			
Rifas-Shiman, 2009; ¹⁹ Alternate HEI-P				•						▲ W:R	W:R	W:R							▲ PUFA: SFA	▼ TFA	PUFA: SFA					
Ding, 2021;⁵ CDGCI-PW						▲ N				▲ S	▲R							▼								▼
Hillesund, 2014; ¹⁰ NND					▼ MI:J		▲ WG : RG		WG : RG	A	M	М		MI: J				▼ W: SS B							•	W: SS B
Hillesund, 2018; ¹¹ NFFD Diet																	▼ AS	AS					▼		•	▼
Factor/Cluster																										
Brantsæter, 2009; ² Vegetable																			A							
Brantsæter, 2009, ² Processed food		▲ F F					▼			►	P															
Brantsæter, 2009; ² Potato and fish											M	М							•							
Brantsæter, 2009; ² Cakes and sweets																		A								
de Seymour, 2022; ⁴ Fish, poultry and vegetables- based						▲ N					R														•	
de Seymour, 2022; ⁴ Pasta, sweetened beverages, oils and condiments- based																			OC		OC					
Flynn, 2016; ⁸ Fruit & Veg														▲ Y												

Article; Dietary pattern	Vegetables	Potato	Legumes	Fruit	Fruit Juice	Nuts, Seeds	Grains: Whole	Grains	Grains: Refined	Fish, Seafood	Meats (Red Processed)	Lean meats (Poultry)	Eggs	Dairy	Dairy: Low, non-fat	Dairy: Whole, high fat	SSB	Sugary Foods	Fat: Unsaturated, Oils	Fat: Other	Fat: Saturated	Alcohol	Sodium	Tea and Coffee	Other A	Other B
Flynn, 2016; ⁸ African/Caribbea n										F	RW	RW														
Flynn, 2016; ⁸ Processed											▲ P						•									
Flynn, 2016; ⁸ Snacks														▲ CH												
Hajianfar, 2018; ⁹ Healthy						▲ N				▲ F	▲ R															
Hajianfar, 2018; ⁹ Western		•	•			N N	•			F	R P		•			•	▲ ▲ AS	▲ AS			•			▲ C		
Hajianfar, 2018; ⁹ Traditional									•								AS	AS	•					▲ T		
Hu, 2022; ¹² Traditional-TFD						▲ N					▲ R															
Hu, 2022; ¹² Wheaten food- coarse cereals- TFD							•		•				•													
Hu, 2022; ¹² Sweet food- seafood-TFD										▲ S																
Hu, 2022; ¹² Fried food-protein-rich- TFD														A												
Hu, 2022; ¹² Fish- seafood-FFQ											A R															
Hu, 2022; ¹² Protein-rich FFQ						▲ N							•					•								
Hu, 2022; ¹² Vegetable-fruit- rice-FFQ						▲ N																				
Ikem, 2019; ¹³ Western										F	M	М									A					
Ikem, 2019; ¹³ Vegetable/ Prudent																										
Ikem, 2019; ¹³ Seafood											A R															

Article; Dietary pattern	Vegetables	Potato	Legumes	Fruit	Fruit Juice	Nuts, Seeds	Grains: Whole	Grains	Grains: Refined	Fish, Seafood	Meats (Red Processed)	Lean meats (Poultry)	Eggs	Dairy	Dairy: Low, non-fat	Dairy: Whole, high fat	BSS	Sugary Foods	Fat: Unsaturated, Oils	Fat: Other	Fat: Saturated	Alcohol	Sodium	Tea and Coffee	Other A	Other B
Ikem, 2019; ¹³ Nordic											▲ M	М														
Ikem, 2019; ¹³ Rice/Pasta/Poultr v																										
Ikem, 2019; ¹³ Sweets		▲ F F																								
lkem, 2019; ¹³ Alcohol																										
Jarman, 2018; ¹⁵ Healthy																			•							
Miele, 2021; ¹⁷ Obesogenic									•										▲ Fats	Fat s	Fats				▲ U P	
Miele, 2021; ¹⁷ Intermediate									▼									▼	▼ Fats	Fat s	Fats					▼ UP
Miele, 2021; ¹⁷ Vegetarian																										
Miele, 2021; ¹⁷ Protein																										▼
Miele, 2021; ¹⁷ Traditional											▲ M	М	•													
Timmermans, 2011; ²⁰ Mediterranean	•		A							▲ F								V	•			•				
Timmermans, 2011; ²⁰ Traditional				▼				•		▼ F	▲ M	М														•
Torjusen, 2014; ²¹ Health and sustainability		▼ F F							•		▼ M	М						V					▼			